

PyZX

Contents:

	Getting Started

	Frequently Asked Questions
	What is the ZX-calculus? What are ZX-diagrams?

	But why use the ZX-calculus?

	So what has been done with the ZX-calculus?

	Where do I go to ask questions about PyZX and the ZX-calculus?

	I don’t like Python. Can I do ZX-calculus things in different languages?

	What are some things people have done with PyZX?

	What is PyZX not good at?

	Optimizing and simplifying circuits
	Optimizing circuits using the ZX-calculus

	Circuit equality verification

	Gate-level optimization

	Architecture-aware circuit routing

	ZX-diagrams in PyZX and how to modify them
	Accessing and setting vertex and edge type

	Backends

	Creating and modifying ZX-diagrams

	The ZX-diagram editor

	Importing and exporting quantum circuits and ZX-diagrams
	Importing and exporting quantum circuits

	Importing and exporting ZX-diagrams

	Full API documentation
	Graph API

	Circuit API

	Generating Circuits

	Circuit extraction and matrices over Z2

	List of simplifications

	List of rewrite rules

	List of optimization functions

	List of routing functions

	Functions for dealing with tensors

	Drawing

	Tikz and Quantomatic functionality

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

PyZX can be installed as a package using pip:

pip install pyzx

If you wish to use the demo notebooks or benchmark circuits, then the repository can be cloned from Github [https://github.com/Quantomatic/pyzx].

The best way to get started if you have cloned the repository is to run the Getting Started notebook [https://github.com/Quantomatic/pyzx/blob/master/demos/gettingstarted.ipynb] in Jupyter. This page contains the same general information as that notebook.

Warning

The newer JupyterLab as opposed to the older Jupyter Notebook uses a different framework for widgets which is currently not compatible with the widgets used in PyZX. It is therefore recommended that you use the classic notebook interface. If you are using JupyterLab you can find this interface by going to ‘Help -> Launch Classic Notebook’.

Let’s start by importing the library:

>>> import pyzx as zx

For all the examples in this documentation we will assume you have imported PyZX in this manner.

Quantum circuits in PyZX are represented by the Circuit class. File in the supported formats (QASM, QC, Quipper) can easily be imported into PyZX:

circuit = zx.Circuit.load("path/to/circuit.extension")

PyZX tries to automatically figure out in which format the circuit is represented. The generate module supplies several ways to generate random circuits:

>>> circuit = zx.generate.CNOT_HAD_PHASE_circuit(qubits=4,depth=20,clifford=True)

If you are running inside a Jupyter notebook, circuits can be easily visualized:

>>> zx.draw(circuit)

[image: _images/clifford.png]

The default drawing method is to use the D3 Javascript library. When not running in a Jupyter notebook zx.draw returns a matplotlib figure instead.
In PyZX, Hadamard gates are stored as edges between vertices, which here are shown as blue lines.

There are two main data structures in PyZX, Circuits and Graphs. A Circuit is essentially just a list of gates. The above is an example of a Circuit:

>>>print(circuit.gates)
[CNOT(2,3), CNOT(0,1), CNOT(1,3), CNOT(1,2), CNOT(1,3), S(0), S(1), S(3), HAD(2), HAD(3), CNOT(2,1), HAD(3), CNOT(2,0), S(3), CNOT(1,3), S(3), HAD(0), HAD(1), CNOT(3,1), CNOT(3,2)]

Most of the functionality in PyZX works on Graphs instead, which directly represent ZX-diagrams (the drawing function zx.draw above for instance first converted the circuit into a Graph before drawing it). ZX-diagrams are represented by instances of BaseGraph. To convert a circuit into a ZX-diagram, simply do:

g = circuit.to_graph()

Let us use one of the built-in ZX-diagram simplification routines on this ZX-diagram:

>>> zx.clifford_simp(g) # simplifies the diagram
>>> g.normalize() # makes it more presentable
>>> zx.draw(g)

[image: _images/clifford_simp.png]

The same circuit, but rewritten into a more compact ZX-diagram. The blue lines represent edges which have a Hadamard gate on them.

Internally, a ZX-diagram is just a graph with some additional data:

>>> print(g)
Graph(16 vertices, 21 edges)

The simplified ZX-diagram above no longer looks like a circuit. PyZX supplies some methods for turning a Graph back into a circuit:

>>> c = zx.extract_circuit(g.copy())
>>> zx.draw(c)

[image: _images/clifford_extracted.png]

This extraction procedure is sometimes not as good at keeping the number of two-qubit gates low, and will sometimes increase the size of the circuit. PyZX also supplies some Circuit-level optimisers that more consistently reduce the size of the circuit (but are less powerful):

>>> c2 = zx.optimize.basic_optimization(c.to_basic_gates())
>>> zx.draw(c2)

[image: _images/clifford_optimized.png]

To verify that the optimized circuit is still equal to the original we can convert them to numpy tensors and compare equality directly:

>>> zx.compare_tensors(c2,g,preserve_scalar=False)
 True

We can convert circuits into one of several circuit description languages, such as QASM:

>>> print(c2.to_qasm())
OPENQASM 2.0;
include "qelib1.inc";
qreg q[4];
rz(0.5*pi) q[1];
h q[1];
rz(0.5*pi) q[1];
cx q[2], q[0];
h q[2];
h q[3];
h q[0];
cx q[0], q[1];
sdg q[1];
cx q[2], q[1];
cz q[0], q[2];
h q[2];
cz q[0], q[3];
h q[3];
rz(0.5*pi) q[3];
h q[0];
x q[0];
cx q[1], q[2];
cx q[2], q[1];
cx q[1], q[2];

Optimizing random circuits is of course not very useful, so let us do some optimization on a predefined circuit:

>>> c = zx.Circuit.load('circuits/Fast/mod5_4_before') # Circuit.load auto-detects the file format
>>> print(c.gates) # This circuit is built out of CCZ gates.
[NOT(4), HAD(4), CCZ(c1=0,c2=3,t=4), CCZ(c1=2,c2=3,t=4), HAD(4), CNOT(3,4), HAD(4), CCZ(c1=1,c2=2,t=4), HAD(4), CNOT(2,4), HAD(4), CCZ(c1=0,c2=1,t=4), HAD(4), CNOT(1,4), CNOT(0,4)]
>>> c = c.to_basic_gates() # Convert it to the Clifford+T gate set.
>>> print(c.gates)
[NOT(4), HAD(4), CNOT(3,4), T*(4), CNOT(0,4), T(4), CNOT(3,4), T*(4), CNOT(0,4), T(3), T(4), HAD(4), CNOT(0,3), T(0), T*(3), CNOT(0,3), HAD(4), CNOT(3,4), T*(4), CNOT(2,4), T(4), CNOT(3,4), T*(4), CNOT(2,4), T(3), T(4), HAD(4), CNOT(2,3), T(2), T*(3), CNOT(2,3), HAD(4), HAD(4), CNOT(3,4), HAD(4), CNOT(2,4), T*(4), CNOT(1,4), T(4), CNOT(2,4), T*(4), CNOT(1,4), T(2), T(4), HAD(4), CNOT(1,2), T(1), T*(2), CNOT(1,2), HAD(4), HAD(4), CNOT(2,4), HAD(4), CNOT(1,4), T*(4), CNOT(0,4), T(4), CNOT(1,4), T*(4), CNOT(0,4), T(1), T(4), HAD(4), CNOT(0,1), T(0), T*(1), CNOT(0,1), HAD(4), HAD(4), CNOT(1,4), CNOT(0,4)]
>>> print(c.stats())
Circuit mod5_4_before on 5 qubits with 71 gates.
 28 is the T-count
 43 Cliffords among which
 28 2-qubit gates and 14 Hadamard gates.
>>> g = c.to_graph()
>>> print(g)
Graph(109 vertices, 132 edges)
>>> zx.simplify.full_reduce(g) # Simplify the ZX-graph
>>> print(g)
Graph(31 vertices, 38 edges)
>>> c2 = zx.extract_circuit(g).to_basic_gates() # Turn graph back into circuit
>>> print(c2.stats())
Circuit on 5 qubits with 42 gates.
 8 is the T-count
 34 Cliffords among which
 24 2-qubit gates and 10 Hadamard gates.
>>> c3 = zx.optimize.full_optimize(c2) # Do some further optimization on the circuit
>>> print(c3.stats())
Circuit on 5 qubits with 27 gates.
 8 is the T-count
 19 Cliffords among which
 14 2-qubit gates and 2 Hadamard gates.

The circuit file-formats supported by Circuit.load are curently qasm, qc or quipper.
PyZX can also be run from the command-line for some easy circuit-to-circuit manipulation. In order to optimize a circuit you can run the command:

python -m pyzx opt input_circuit.qasm

For more information regarding the command-line tools, run python -m pyzx --help.

This concludes this tutorial. For more information about the simplification procedures see List of simplifications.
The different representations of the graphs and circuits is detailed in Importing and exporting quantum circuits and ZX-diagrams. How to create and modify ZX-diagrams is explained in ZX-diagrams in PyZX and how to modify them.

Frequently Asked Questions

Most of these questions actually aren’t asked that frequently, but I figured this would be a good place to put all this information.

What is the ZX-calculus? What are ZX-diagrams?

ZX-diagrams are a graphical representation of quantum processes. For those who know what that means: they are a type of tensor network.
The benefit of using ZX-diagrams over quantum circuits is that, first, ZX-diagrams can represent arbitrary linear maps and not just unitaries, and second, it comes equipped with a set of useful rewrite rules. These rewrite rules are collectively known as the ZX-calculus.
If you want to learn more, check out the Wikipedia page [https://en.wikipedia.org/wiki/ZX-calculus], this review article [https://arxiv.org/abs/2012.13966], or this book [https://www.amazon.com/Picturing-Quantum-Processes-Diagrammatic-Reasoning/dp/110710422X].

But why use the ZX-calculus?

Quantum circuits are very ‘rigid’. They have the same number of input and output wires, and gates occur at specific locations on these wires. ZX-diagrams are more flexible, which allows us to find (in principle) more optimisations. Since we are not restricted to unitary circuits, we can also use ZX-diagrams to reason about non-unitary models of computation like
Measurement-based Quantum Computation [https://arxiv.org/abs/2003.01664] or lattice surgery in surface codes [https://arxiv.org/abs/1704.08670].
There are some issues when doing this rewriting though, which is that it can be hard [https://arxiv.org/abs/2202.09194] to transform a ZX-diagram back into a quantum circuit. You can still do this however, if you are smart [https://arxiv.org/abs/1902.03178] about it.

So what has been done with the ZX-calculus?

A bunch of things! Below I list just the things related to quantum computing where there are concrete numbers to back-up the benefits of using it over standard quantum circuits.

	Using the rewrite strategy full_reduce that is implemented in PyZX, a Clifford circuit can be brought into a normal form [https://arxiv.org/abs/1902.03178] that has some nice properties.

	Using this same rewrite strategy, all the Clifford measurements in a measurement-based quantum computation can be removed [https://arxiv.org/abs/2003.01664].

	Using this same rewrite strategy, we can optimise the T-count [https://arxiv.org/abs/1903.10477] of a circuit.

	Using ZX-diagrams, several [https://arxiv.org/abs/1812.01238] surface code constructions [https://arxiv.org/abs/1905.08916] have succesfully [https://arxiv.org/abs/1912.11503] been optimised [https://arxiv.org/abs/2206.12780].

	Using ZX-diagrams, the simulation technique of stabilizer decompositions [https://quantum-journal.org/papers/q-2019-09-02-181/] can be interleaved with diagrammatic simplifications [https://arxiv.org/abs/2109.01076] to speed these up by a considerable amount [https://arxiv.org/abs/2202.09202]. These techniques are implemented in a Rust port of PyZX: quizx [https://github.com/Quantomatic/quizx].

Where do I go to ask questions about PyZX and the ZX-calculus?

Check out the ZX-calculus Discord channel [https://discord.gg/6shbsEQ3FC]. Otherwise you could go to the Quantum Computing Stack Exchange [https://quantumcomputing.stackexchange.com/] and tag your question with zx-calculus. If you have a feature request or something you think might be a bug, feel free to create an issue on Github [https://github.com/Quantomatic/pyzx/issues].

I don’t like Python. Can I do ZX-calculus things in different languages?

Some of the functionality of PyZX has been ported to the ZXCalculus.jl [https://juliapackages.com/p/zxcalculus] Julia package. A port to the Rust language, quizx [https://github.com/Quantomatic/quizx], is also available. These packages have the benefit of being a lot faster, but the drawback of been less feature-rich, for instance having less capabilities of visualising the results.

What are some things people have done with PyZX?

Below there is a list of papers where the authors either contributed new features to PyZX, or otherwise used PyZX in their work (for instance to optimise circuits they use, or to benchmark against). I try to keep this list up-to-date. If you see something missing, let me know!
You might also want to take a look at the full list of ZX papers tagged PyZX [https://zxcalculus.com/publications.html?q=pyzx] (although this does not include papers that do not use ZX-diagrams themselves).

Implemented additional features:

	Meijer-van de Griendt [https://arxiv.org/abs/1904.00633] implemented a CNOT routing algorithm in PyZX based on Steiner trees.

	East et al. [https://arxiv.org/abs/2012.01219] built on the ZH-calculus rewrite strategy in PyZX to automatically simplify AKLT states. See also Richard East’s PhD thesis [https://tel.archives-ouvertes.fr/tel-03719945].

	Ryan Krueger in his Master thesis [https://arxiv.org/abs/2209.06874] looked at using simulated annealing and genetic algorithms to improve simplification and reduce CNOT count of the resulting circuits. Related strategies were proposed in Korbinian Staudacher’s Master thesis [https://www.mnm-team.org/pub/Diplomarbeiten/stau21/PDF-Version/stau21.pdf].

	Borgna et al. [https://arxiv.org/abs/2109.06071] implemented mixed quantum-classical optimization in PyZX. This allows you to represent and simplify circuits that include measurement and classical control.

Used PyZX:

	Lehmann et al. [https://arxiv.org/abs/2205.05781] implemented some ZX-calculus rewrite rules in Coq [https://coq.inria.fr/] in order to formally verify correctness of rewrite rules.

	Hanks et al. [https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.041030] used the ZX-calculus to optimise braided circuits on surface codes. PyZX helped them optimise the circuits to a size where they could do further optimisation by hand.

	Neri et al. [https://ieeexplore.ieee.org/abstract/document/9557827?casa_token=PNUnIAHVfVcAAAAA:Wc1S-lri0k1jQxRHWVKln_zoq0johTznpzMH8FQrpyCxf27VaTOKyYoCOB9-dDsBO74A8b4Z2Q] used PyZX in their pipeline to compile quantum circuits to something that could run on physical quantum computers.

Benchmarked against PyZX:

	Yeh et al. [https://src.acm.org/binaries/content/assets/src/2020/lia-yeh.pdf] benchmarked PyZX against Qiskit transpilation and finds that in some cases PyZX improves gate counts beyond that of Qiskit.

	Hietala et al. [https://arxiv.org/abs/1912.02250] implemented a verified quantum compiler, also in Coq, and benchmarked it against PyZX (amongst other libraries). They find that while PyZX is better at T-count optimisation, it is worse at reducing two-qubit gate count.

	Kharkov et al. [https://arxiv.org/abs/2202.14025] built a general compiler benchmark platform and compared various compilers on a variety of different metrics.

What is PyZX not good at?

PyZX was originally built to optimize T-count. It is not so good at optimizing two-qubit gate count (like the number of CNOTs). This behaviour however changes quite drastically per type of circuit. You might find for instance that it blows up the number of CNOTs if you start with a circuit full of Toffoli’s, while if you give it a Trotterized chemistry circuit, it will be able to perform a lot better.

PyZX also doesn’t implement any of the tricks to optimally compile one and two-qubit circuits, such as using the Euler Decomposition to combine adjacent single-qubit rotations, or the KAK decomposition to reduce every two-qubit circuit to have at most three CNOTs.

PyZX is quite fast, but it is still written in Python, and as such has its limits. If you have a circuit with tens of thousands of gates it should run quickly enough, but if you go to millions of gates, it will start to lag. If speed is your concern, check out quizx [https://github.com/Quantomatic/quizx].

Optimizing and simplifying circuits

The main functionality of PyZX is the ability to optimize quantum circuits. The main optimization methods work by converting a circuit into a ZX-diagram, simplifying this diagram, and then converting it back into a quantum circuit. This process is explained in the next section. There are also some basic optimization methods that work directly on the quantum circuit representation. This is detailed in the section Gate-level optimization.

Optimizing circuits using the ZX-calculus

PyZX allows the simplification of quantum circuits via a translation to the ZX-calculus. To demonstrate this functionality, let us generate a random circuit using CNOT_HAD_PHASE_circuit:

c = zx.generate.CNOT_HAD_PHASE_circuit(qubits=8, depth=100)
print(c.stats())

To use the ZX-diagram simplification routines, the circuit must first be converted to a ZX-diagram:

g = c.to_graph()

We can now use any of the built-in simplification strategies for ZX-diagrams. The most powerful of these is full_reduce:

zx.full_reduce(g, quiet=False) # simplifies the Graph in-place, and show the rewrite steps taken.
g.normalize() # Makes the graph more suitable for displaying
zx.draw(g) # Display the resulting diagram

This rewrite strategy implements a variant of the algorithm described in this paper [https://arxiv.org/abs/1903.10477].
The resulting diagram most-likely does not resemble the structure of a circuit. In order to extract an equivalent circuit from the diagram, we use the function extract_circuit.

Simply use it like so:

c_opt = zx.extract_circuit(g.copy())

For some circuits, extract_circuit can result in quite large circuits involving many CNOT gates. If one is only interested in optimizing the T-count of a circuit, the extraction stage can be skipped by using the phase-teleportation method of this paper [https://arxiv.org/abs/1903.10477]. This applies full_reduce in such a way that only phases are moved around the circuit, and all other structure remains intact:

g = c.to_graph()
zx.teleport_reduce(g)
c_opt = zx.Circuit.from_graph(g) # This function is able to reconstruct a Circuit from a Graph that looks sufficiently like a Circuit

Circuit equality verification

In order to verify that the simplified circuit is equal to the original, PyZX supplies two different methods.
For circuits on a small number of qubits (generally less than 10) PyZX allows for the direct calculation of the linear maps that the circuits implement.
These can then be checked for equality:

zx.compare_tensors(c,c_opt) # Returns True if c and c_opt implement the same circuit (up to global phase)

You can also inspect the linear map itself by calling c.to_matrix().
For larger circuits calculating the linear map directly is not feasible.
For those circuits PyZX allows you to check equality of the circuits using the built-in ZX-diagram rewrite strategy.
This is done by composing one circuit with the adjoint of the other and simplifying the resulting circuit.
If this is reducable to the identity, this is strong evidence that the circuits indeed implement the same unitary:

c.verify_equality(c_opt) # Returns True if full_reduce() is able to reduce the composition of the circuits to the identity.

Gate-level optimization

Besides the advanced simplification strategies based on the ZX-calculus, PyZX also supplies some optimization methods that work directly on Circuits. The most straightforward of these is basic_optimization.

A more advanced optimization technique involves splitting up the circuit into phase polynomial [https://arxiv.org/abs/1303.2042] subcircuits, optimizing each of these, and then resynthesising the circuit, which can be done using phase_block_optimize.

The basic_optimization and phase_block_optimize functions are also combined into a single function full_optimize.

Architecture-aware circuit routing

The extract_circuit function does not take into account
the architecture of the quantum computer that the circuit will be run on. When
targeting a specific architecture it is often beneficial to resynthesize the
circuit to that architecture by following the qubit connectivity when deciding
which multi-qubit gates to use.

First, we need to define the specific architecture we want to target. The
function create_architecture can create a number of
pre-defined Architecture objects.:

import pyzx.routing.architecture

Create a 9-qubit square grid architecture
grid_arch = architecture.create_architecture(architecture.SQUARE, 9)

Create a IBM qx5 architecture
ibm_arch = architecture.create_architecture(architecture.IBM_QX5)

PyZX provides a function for routing phase-polynomial circuits. These circuits
composed of CNOT, CX and ZPhase gates, which can be directly translated to phase
gadgets in ZX. The module generate provides a function for creating
such circuits to an architecture.:

c_pp = zx.generate.phase_poly(n_qubits=16, n_phase_layers=10, cnots_per_layer=10)
routed_circuit = zx.routing.route_phase_poly(c_pp, ibm_arch)

ZX-diagrams in PyZX and how to modify them

ZX-diagrams are represented in PyZX by instances of the BaseGraph class, and are stored as simple graphs with some additional data on the vertices and edges. There are 4 different types of vertices: boundaries, Z-spiders, X-spiders and H-boxes. Boundary vertices represent an input or an output to the circuit and carry no further information. Z- and X-spider are the usual bread and butter of ZX-diagrams. H-boxes are used in ZH-diagrams as a generalisation of the Hadamard gate. Non-boundary vertices carry additional information in the form of a phase. This is a fraction q representing a phase pi*q.

As a simple example, we could have a graph with 3 vertices. The first being a boundary acting as input, the last being a boundary acting as output. If the middle one is a Z-vertex with phase a that is connected to both the input and output, then this graph represents a Z[pi*a]-phase gate.

Edges in a PyZX graph come in two flavors. The first is the default edge type which represents a regular connection. The second is a Hadamard-edge. This represents a connection between vertices with a Hadamard gate applied between them, and in the drawing functions of PyZX is represented by a blue edge.

Accessing and setting vertex and edge type

The type of a vertex v in a graph g can be retrieved by g.type(v). This returns an integer representing the type. These integers are stored in pyzx.utils.VertexType and is one of the following:

	VertexType.BOUNDARY

	VertexType.Z

	VertexType.X

	VertexType.H_BOX

To get the type of all the vertices at once you call g.types(). This returns a dictionary-like object that maps vertices to their types. So for instance one can do the following:

ty = g.types()
if ty[vertex] == VertexType.BOUNDARY:
 #It is a boundary

Similarly, the type of an edge is stored as one of the integers EdgeType.SIMPLE or EdgeType.HADAMARD, where EdgeType can be found as pyzx.utils.EdgeType. The edge type of a given edge can be retrieved by g.edge_type(edge).

Backends

ZX-graphs can be represented internally in different ways. The only fully functioning backend right now is pyzx.graph.graph_s.GraphS, which is written entirely in Python. A partial implementation using the python-igraph package is also available as pyzx.graph.graph_ig.GraphIG. A new backend can be constructed by subclassing pyzx.graph.base.BaseGraph.

Creating and modifying ZX-diagrams

To create an empty ZX-diagram call g=zx.Graph().
You can then add a vertex and set its data by calling for example v = g.add_vertex(zx.VertexType.Z, qubit=0, row=1, phase=1). To add an edge between vertices v and w you call g.add_edge(g.edge(v,w),edgetype=zx.EdgeType.SIMPLE).

These functions are probably best used in some type of loop or function so that you don’t have to set everything by hand. If you wish to create a ZX-diagram in the shape of a circuit it is probably better to use the Circuit, or if you don’t care about the exact structure of the circuit, one of the functions in generate.

The ZX-diagram editor

If you are using a Jupyter notebook, probably the best way to build an arbitrarily shaped ZX-diagram is to use the built-in graphical editor. If you have a ZX-diagram g, call e = zx.editor.edit(g) to start a new editor instance. The output of the cell should be the editor, and should look something like this:

[image: _images/editor_example.png]

Warning

The newer JupyterLab as opposed to the older Jupyter Notebook uses a different framework for widgets which is currently not compatible with the widgets used in PyZX. For the editor to work you therefore must use the classic notebook interface. If you are using JupyterLab you can find this interface by going to ‘Help -> Launch Classic Notebook’. In addition, the newest versions of ipywidgets break the editor widget. The latest version that is known to work is ipywidgets==7.7.1.

Ctrl-clicking (Command-clicking for Mac users) on the view of the graph will add a new vertex of the type specified by ‘Vertex type’ (so a Z-vertex in the above example). Click ‘Vertex type’ to change the type of vertex to be added, or with the editor window selected, use the hotkey ‘X’.

Ctrl-drag (Command-drag) between two vertices to add a new edge of the type ‘Edge type’ (either Regular or Hadamard), or use the hotkey ‘E’ to switch. Adding an edge between vertices where there is already one present replaces the edge with the new one.

Drag a box around vertices to select them. With a set selected, drag your mouse on one of the vertices to move them. Press delete or backspace to delete your selection. You can also directly select an edge by clicking it.

Pressing Ctrl+C while having a selection copies your selection to the clipboard as tikz code that can be directly pasted into Tikzit. Pressing Ctrl+V pastes a diagram specified by tikz code into the diagram.

Double-click a vertex to change its phase. You should enter a fraction possibly followed by pi. Example inputs: ‘1’, ‘-1/2’, ‘3/2pi’. An empty input gives the default value (‘0’ for Z/X spiders, ‘1’ for H-boxes).

Any change can be undone by pressing Ctrl-Z, and redone by pressing Ctrl-Shift-Z.

Changes in the editor are automatically pushed to the underlying graph. So if we made the editor using the command e = zx.editor.edit(g) than any changes we make are automatically done to g. Alternatively, we can access the graph by e.graph. Outside of the editor we can also make changes to g. For instance, we can call zx.spider_simp(g) to fuse all the spiders in g. To view these changes in the editor, call e.update().

With a set of vertices selected, you will see some of the buttons beneath the editor light up. Clicking these buttons will do the action it says on the graph. Each of these actions will preserve the semantics of your ZX-diagram (i.e. the linear map it implements).

Sometimes it is useful to see which linear map your ZX-diagram implements. If you create the editor with the command e = zx.editor.edit(g,show_matrix=True), this will show a Latex-styled matrix beneath the editor with the linear map your ZX-diagram implements. This matrix is automatically updated after every change you make to the graph. Note that this only works if your ZX-diagram does not have too many inputs and outputs (at most 4). It automatically regards boundary vertices ‘pointing right’ as inputs, and boundary vertices ‘pointing left’ as outputs. You can change this manually by changing g.inputs and g.outputs.

If you click ‘Save snapshot’, a copy of the graph is saved in the list e.snapshots. When you press ‘Load in Tikzit’, all snapshots are loaded into a Tikz format parseable by Tikzit [https://tikzit.github.io]. In order to use this functionality you have to point zx.settings.tikzit_location to a valid executable.

Importing and exporting quantum circuits and ZX-diagrams

There are several ways to import and export circuits and ZX-diagrams in PyZX.

Importing and exporting quantum circuits

There are a number of standards for representing quantum circuits that are supported in PyZX. To see if PyZX supports a certain file format, just call load:

circuit = zx.Circuit.load("path/to/circuit.extension")

The currently supported formats are

	QASM [https://en.wikipedia.org/wiki/OpenQASM],

	the ASCII format of Quipper [https://www.mathstat.dal.ca/~selinger/quipper/],

	the simple .qc format used for representing quantum circuits in LaTex,

	and the qsim format used by Google.

To convert a PyZX circuit to these formats, use to_qasm, to_quipper, to_qc.

PyZX also offers a convenience function to construct a circuit out of a string containing QASM code using either from_qasm or qasm.

To convert a Circuit into a PyZX Graph (i.e. a ZX-diagram), call the method to_graph.

Importing and exporting ZX-diagrams

A ZX-diagram in PyZX is represented as an instance of Graph. A ZX-diagram can be loaded using the .qgraph format that Quantomatic uses, via from_json. It can be converted into that format using to_json.

Apart from this reversible representation, there are also several one-way translations for exporting ZX-diagrams from PyZX. A graph can be exported to GraphML format using to_graphml.
To export a ZX-diagram to tikz for easy importing to Latex, use to_tikz.

Additionally, PyZX diagrams can be directly exported into the applications Tikzit [https://tikzit.github.io/] using the tikzit function or edited in Quantomatic [https://quantomatic.github.io/] using the function edit_graph.

Finally, to display a ZX-diagram in Jupyter call draw and to create a matplotlib picture of the ZX-diagram use draw_matplotlib.

Some ZX-diagrams can be converted into an equivalent circuit. For complicated ZX-diagrams, the function extract_circuit is supplied. For ZX-diagrams that come directly from Circuits, e.g. those produced by calling c.to_graph for a Circuit c, one can also use the static method from_graph, which is more lightweight.

Full API documentation

Below is listed the documentation for all the supported functions, classes and methods in PyZX.
Some functionality of PyZX is still experimental or not well-tested (like the ZH-diagram interface and rewrite rules), so it is not listed here.

Graph API

ZX-graphs are internally represented by instances of classes that implement the methods of BaseGraph. These methods are listed below. The only complete implementation currently is GraphS.

	
class GraphS

	Purely Pythonic implementation of BaseGraph.

To create a graph of a specific backend a convenience method Graph is supplied:

	
Graph(backend=None)

	Returns an instance of an implementation of BaseGraph.
By default GraphS is used.
Currently backend is allowed to be simple (for the default),
or ‘graph_tool’ and ‘igraph’.
This method is the preferred way to instantiate a ZX-diagram in PyZX.

	Return type

	BaseGraph

Example

To construct an empty ZX-diagram, just write:

g = zx.Graph()

Below you can find full documentation of all the functions supplied by a Graph in PyZX.

	
class BaseGraph

	Base class for letting graph backends interact with PyZX.
For a backend to work with PyZX, there should be a class that implements
all the methods of this class. For implementations of this class see
GraphS or GraphIG.

	
add_edge(edge, edgetype=1)

	Adds a single edge of the given type

	Return type

	None

	
add_edge_smart(e, edgetype)

	Like add_edge, but does the right thing if there is an existing edge.

	
add_edge_table(etab)

	Takes a dictionary mapping (source,target) –> (#edges, #h-edges) specifying that
#edges regular edges must be added between source and target and $h-edges Hadamard edges.
The method selectively adds or removes edges to produce that ZX diagram which would
result from adding (#edges, #h-edges), and then removing all parallel edges using Hopf/spider laws.

	Return type

	None

	
add_edges(edges, edgetype=1)

	Adds a list of edges to the graph.

	Return type

	None

	
add_to_phase(vertex, phase)

	Add the given phase to the phase value of the given vertex.

	Return type

	None

	
add_vertex(ty=0, qubit=-1, row=-1, phase=None, ground=False)

	Add a single vertex to the graph and return its index.
The optional parameters allow you to respectively set
the type, qubit index, row index and phase of the vertex.

	Return type

	TypeVar(VT, bound= int)

	
add_vertices(amount)

	Add the given amount of vertices, and return the indices of the
new vertices added to the graph, namely: range(g.vindex() - amount, g.vindex())

	Return type

	List[TypeVar(VT, bound= int)]

	
adjoint()

	Returns a new graph equal to the adjoint of this graph.

	Return type

	BaseGraph

	
apply_effect(effect)

	Inserts an effect into the outputs of the graph. effect should be
a string with every character representing an output effect for each qubit.
The possible types of effects are one of ‘0’, ‘1’, ‘+’, ‘-’ for the respective
kets. If ‘/’ is specified this output is skipped.

	Return type

	None

	
apply_state(state)

	Inserts a state into the inputs of the graph. state should be
a string with every character representing an input state for each qubit.
The possible types of states are on of ‘0’, ‘1’, ‘+’, ‘-’ for the respective
kets. If ‘/’ is specified this input is skipped.

	Return type

	None

	
auto_detect_io()

	Adds every vertex that is of boundary-type to the list of inputs or outputs.
Whether it is an input or output is determined by looking whether its neighbor
is further to the right or further to the left of the input.
Inputs and outputs are sorted by vertical position.
Raises an exception if boundary vertex does not have a unique neighbor
or if this neighbor is on the same horizontal position.

	
clone()

	This method should return an identical copy of the graph, without any relabeling

Used in lookahead extraction.

	Return type

	BaseGraph

	
compose(other)

	Inserts a graph after this one. The amount of qubits of the graphs must match.
Also available by the operator graph1 + graph2

	Return type

	None

	
connected(v1, v2)

	Returns whether vertices v1 and v2 share an edge.

	Return type

	bool

	
copy(adjoint=False, backend=None)

	Create a copy of the graph. If adjoint is set,
the adjoint of the graph will be returned (inputs and outputs flipped, phases reversed).
When backend is set, a copy of the graph with the given backend is produced.
By default the copy will have the same backend.

	Parameters

	
	adjoint (bool) – set to True to make the copy be the adjoint of the graph

	backend (Optional[str]) – the backend of the output graph

	Return type

	BaseGraph

	Returns

	A copy of the graph

Note

The copy will have consecutive vertex indices, even if the original
graph did not.

	
depth()

	Returns the value of the highest row number given to a vertex.
This is -1 when no rows have been set.

	Return type

	Union[float, int]

	
edge(s, t)

	Returns the edge object with the given source/target.

	Return type

	TypeVar(ET)

	
edge_s(edge)

	Returns the source of the given edge.

	Return type

	TypeVar(VT, bound= int)

	
edge_set()

	Returns the edges of the graph as a Python set.
Should be overloaded if the backend supplies a cheaper version than this.

	Return type

	Set[TypeVar(ET)]

	
edge_st(edge)

	Returns a tuple of source/target of the given edge.

	Return type

	Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int)]

	
edge_t(edge)

	Returns the target of the given edge.

	Return type

	TypeVar(VT, bound= int)

	
edge_type(e)

	Returns the type of the given edge:
EdgeType.SIMPLE if it is regular, EdgeType.HADAMARD if it is a Hadamard edge,
0 if the edge is not in the graph.

	Return type

	Literal[1, 2]

	
edges()

	Iterator that returns all the edges. Output type depends on implementation in backend.

	Return type

	Sequence[TypeVar(ET)]

	
classmethod from_json(js)

	Converts the given .qgraph json string into a Graph.
Works with the output of to_json.

	Return type

	BaseGraph

	
classmethod from_tikz(tikz, warn_overlap=True, fuse_overlap=True, ignore_nonzx=False)

	Converts a tikz diagram into a pyzx Graph.
The tikz diagram is assumed to be one generated by Tikzit,
and hence should have a nodelayer and a edgelayer..

	Parameters

	
	s – a string containing a well-defined Tikz diagram.

	warn_overlap (bool) – If True raises a Warning if two vertices have the exact same position.

	fuse_overlap (bool) – If True fuses two vertices that have the exact same position. Only has effect if fuse_overlap is False.

	ignore_nonzx (bool) – If True suppresses most errors about unknown vertex/edge types and labels.

	Return type

	BaseGraph

Warning

Vertices that might look connected in the output of the tikz are not necessarily connected
at the level of tikz itself, and won’t be treated as such in pyzx.

	
grounds()

	Returns the set of vertices connected to a ground.

	Return type

	Set[TypeVar(VT, bound= int)]

	
incident_edges(vertex)

	Returns all neighboring edges of the given vertex.

	Return type

	Sequence[TypeVar(ET)]

	
inputs()

	Gets the inputs of the graph.

	Return type

	Tuple[TypeVar(VT, bound= int), ...]

	
is_ground(vertex)

	Returns a boolean indicating if the vertex is connected to a ground.

	Return type

	bool

	
is_hybrid()

	Returns whether this is a hybrid quantum-classical graph,
i.e. a graph with ground generators.

	Return type

	bool

	
is_id()

	Returns whether the graph is just a set of identity wires,
i.e. a graph where all the vertices are either inputs or outputs,
and they are connected to each other in a non-permuted manner.

	Return type

	bool

	
merge(other)

	Merges this graph with the other graph in-place.
Returns (list-of-vertices, list-of-edges) corresponding to
the id’s of the vertices and edges of the other graph.

	Return type

	Tuple[List[TypeVar(VT, bound= int)], List[TypeVar(ET)]]

	
neighbors(vertex)

	Returns all neighboring vertices of the given vertex.

	Return type

	Sequence[TypeVar(VT, bound= int)]

	
normalize()

	Puts every node connecting to an input/output at the correct qubit index and row.

	Return type

	None

	
num_edges()

	Returns the amount of edges in the graph

	Return type

	int

	
num_inputs()

	Gets the number of inputs of the graph.

	Return type

	int

	
num_outputs()

	Gets the number of outputs of the graph.

	Return type

	int

	
num_vertices()

	Returns the amount of vertices in the graph.

	Return type

	int

	
outputs()

	Gets the outputs of the graph.

	Return type

	Tuple[TypeVar(VT, bound= int), ...]

	
pack_circuit_rows()

	Compresses the rows of the graph so that every index is used.

	Return type

	None

	
phase(vertex)

	Returns the phase value of the given vertex.

	Return type

	Union[Fraction, int]

	
phases()

	Returns a mapping of vertices to their phase values.

	Return type

	Mapping[TypeVar(VT, bound= int), Union[Fraction, int]]

	
qubit(vertex)

	Returns the qubit index associated to the vertex.
If no index has been set, returns -1.

	Return type

	Union[float, int]

	
qubit_count()

	Returns the number of inputs of the graph

	Return type

	int

	
qubits()

	Returns a mapping of vertices to their qubit index.

	Return type

	Mapping[TypeVar(VT, bound= int), Union[float, int]]

	
remove_edge(edge)

	Removes the given edge from the graph.

	Return type

	None

	
remove_edges(edges)

	Removes the list of edges from the graph.

	Return type

	None

	
remove_isolated_vertices()

	Deletes all vertices and vertex pairs that are not connected to any other vertex.

	Return type

	None

	
remove_vertex(vertex)

	Removes the given vertex from the graph.

	Return type

	None

	
remove_vertices(vertices)

	Removes the list of vertices from the graph.

	Return type

	None

	
replace_subgraph(left_row, right_row, replace)

	Deletes the subgraph of all nodes with rank strictly between left_row
and right_row and replaces it with the graph replace.
The amount of nodes on the left row should match the amount of inputs of
the replacement graph and the same for the right row and the outputs.
The graphs are glued together based on the qubit index of the vertices.

	Return type

	None

	
row(vertex)

	Returns the row that the vertex is positioned at.
If no row has been set, returns -1.

	Return type

	Union[float, int]

	
rows()

	Returns a mapping of vertices to their row index.

	Return type

	Mapping[TypeVar(VT, bound= int), Union[float, int]]

	
set_edge_type(e, t)

	Sets the type of the given edge.

	Return type

	None

	
set_ground(vertex, flag=True)

	Connect or disconnect the vertex to a ground.

	Return type

	None

	
set_inputs(inputs)

	Sets the inputs of the graph.

	
set_outputs(outputs)

	Sets the outputs of the graph.

	
set_phase(vertex, phase)

	Sets the phase of the vertex to the given value.

	Return type

	None

	
set_phase_master(m)

	Points towards an instance of the class Simplifier.
Used for phase teleportation.

	Return type

	None

	
set_position(vertex, q, r)

	Set both the qubit index and row index of the vertex.

	
set_qubit(vertex, q)

	Sets the qubit index associated to the vertex.

	Return type

	None

	
set_row(vertex, r)

	Sets the row the vertex should be positioned at.

	Return type

	None

	
set_type(vertex, t)

	Sets the type of the given vertex to t.

	Return type

	None

	
set_vdata(vertex, key, val)

	Sets the vertex data associated to key to val.

	Return type

	None

	
stats()

	
	Return type

	str

	Returns

	Returns a string with some information regarding the degree distribution of the graph.

	
subgraph_from_vertices(verts)

	Returns the subgraph consisting of the specified vertices.

	Return type

	BaseGraph

	
tensor(other)

	Take the tensor product of two graphs. Places the second graph below the first one.
Can also be called using the operator graph1 @ graph2

	Return type

	BaseGraph

	
to_graphml()

	Returns a GraphML representation of the graph.

	Return type

	str

	
to_json(include_scalar=True)

	Returns a json representation of the graph that follows the Quantomatic .qgraph format.
Convert back into a graph using from_json.

	Return type

	str

	
to_matrix(preserve_scalar=True)

	Returns a representation of the graph as a matrix using tensorfy

	Return type

	ndarray

	
to_tensor(preserve_scalar=True)

	Returns a representation of the graph as a tensor using tensorfy

	Return type

	ndarray

	
to_tikz(draw_scalar=False)

	Returns a Tikz representation of the graph.

	Return type

	str

	
type(vertex)

	Returns the type of the given vertex:
VertexType.BOUNDARY if it is a boundary, VertexType.Z if it is a Z node,
VertexType.X if it is a X node, VertexType.H_BOX if it is an H-box.

	Return type

	Literal[0, 1, 2, 3]

	
types()

	Returns a mapping of vertices to their types.

	Return type

	Mapping[TypeVar(VT, bound= int), Literal[0, 1, 2, 3]]

	
update_phase_index(old, new)

	When a phase is moved from a vertex to another vertex,
we need to tell the phase_teleportation algorithm that this has happened.
This function does that. Used in some of the rules in simplify.

	Return type

	None

	
vdata(vertex, key, default=0)

	Returns the data value of the given vertex associated to the key.
If this key has no value associated with it, it returns the default value.

	Return type

	Any

	
vdata_keys(vertex)

	Returns an iterable of the vertex data key names.
Used e.g. in making a copy of the graph in a backend-independent way.

	Return type

	Sequence[str]

	
vertex_degree(vertex)

	Returns the degree of the given vertex.

	Return type

	int

	
vertex_set()

	Returns the vertices of the graph as a Python set.
Should be overloaded if the backend supplies a cheaper version than this.

	Return type

	Set[TypeVar(VT, bound= int)]

	
vertices()

	Iterator over all the vertices.

	Return type

	Sequence[TypeVar(VT, bound= int)]

	
vindex()

	The index given to the next vertex added to the graph. It should always
be equal to max(g.vertices()) + 1.

	Return type

	TypeVar(VT, bound= int)

Circuit API

	
class Circuit(qubit_amount, name='', bit_amount=None)

	Class for representing quantum circuits.

This class is mostly just a wrapper for a list of gates with methods for converting
between different representations of a quantum circuit.

The methods in this class that convert a specification of a circuit into an instance of this class,
generally do not check whether the specification is well-defined. If a bad input is given,
the behaviour is undefined.

	
add_circuit(circ, mask=None, bit_mask=None)

	Adds the gate of another circuit to this one. If mask is not given,
then they must have the same amount of qubits and they are mapped one-to-one.
If mask is given then it must be a list specifying to which qubits the qubits
in the given circuit correspond. Similarly, if bit_mask is not given,
then they must have the same amount of bits.

Example:

c1 = Circuit(qubit_amount=4)
c2 = Circuit(qubit_amount=2)
c2.add_gate("CNOT",0,1)
c1.add_circuit(c2, mask=[0,3]) # Now c1 has a CNOT from the first to the last qubit

If the circuits have the same amount of qubits then it can also be called as an operator:

c1 = Circuit(2)
c2 = Circuit(2)
c1 += c2

	Return type

	None

	
add_gate(gate, *args, **kwargs)

	Adds a gate to the circuit. gate can either be
an instance of a Gate, or it can be the name of a gate,
in which case additional arguments should be given.

Example:

circuit.add_gate("CNOT", 1, 4) # adds a CNOT gate with control 1 and target 4
circuit.add_gate("ZPhase", 2, phase=Fraction(3,4)) # Adds a ZPhase gate on qubit 2 with phase 3/4

	Return type

	None

	
add_gates(gates, qubit)

	Adds a series of single qubit gates on the same qubit.
gates should be a space-separated string of gatenames.

Example:

circuit.add_gates("S T H T H", 1)

	Return type

	None

	
static from_graph(g, split_phases=True)

	Produces a Circuit containing the gates of the given ZX-graph.
If the ZX-graph is not circuit-like then the behaviour of this function
is undefined.
split_phases governs whether nodes with phases should be split into
Z,S, and T gates or if generic ZPhase/XPhase gates should be used.

	Return type

	Circuit

	
static from_qasm(s)

	Produces a Circuit based on a QASM input string.
It ignores all the non-unitary instructions like measurements in the file.
It currently doesn’t support custom gates that have parameters.

	Return type

	Circuit

	
static from_qasm_file(fname)

	Produces a Circuit based on a QASM description of a circuit.
It ignores all the non-unitary instructions like measurements in the file.
It currently doesn’t support custom gates that have parameters.

	Return type

	Circuit

	
static from_qc_file(fname)

	Produces a Circuit based on a .qc description of a circuit.
If a Toffoli gate with more than 2 controls is encountered, ancilla qubits are added.
Currently up to 5 controls are supported.

	Return type

	Circuit

	
static from_qsim_file(fname)

	Produces a Circuit based on a .qc description of a circuit.
If a Toffoli gate with more than 2 controls is encountered, ancilla qubits are added.
Currently up to 5 controls are supported.

	Return type

	Circuit

	
static from_quipper(s)

	Produces a Circuit based on a Quipper ASCII description of a circuit.
Currently measurement instructions are not supported and are discarded.

	Return type

	Circuit

	
static from_quipper_file(fname)

	Produces a Circuit based on a Quipper ASCII description of a circuit.
Currently measurement instructions are not supported and are discarded.

	Return type

	Circuit

	
static load(circuitfile)

	Tries to detect the circuit description language from the filename and its contents,
and then tries to load the file into a circuit.

	Return type

	Circuit

	
prepend_gate(gate, *args, **kwargs)

	The same as add_gate, but adds the gate to the start of the circuit, not the end.

	
stats(depth=False)

	Returns statistics on the amount of gates in the circuit, separated into different classes
(such as amount of T-gates, two-qubit gates, Hadamard gates).

	Return type

	str

	
stats_dict(depth=False)

	Returns a dictionary containing statistics on the amount of gates in the circuit,
separated into different classes (such as amount of T-gates, two-qubit gates, Hadamard gates).

	Return type

	dict

	
tcount()

	Returns the amount of T-gates necessary to implement this circuit.

	Return type

	int

	
tensor(other)

	Takes the tensor product of two Circuits. Places the second one below the first.
Can also be done as an operator: circuit1 @ circuit2.

	Return type

	Circuit

	
to_basic_gates()

	Returns a new circuit with every gate expanded in terms of X/Z phases, Hadamards
and the 2-qubit gates CNOT, CZ, CX.

	Return type

	Circuit

	
to_emoji()

	Converts circuit into a representation that can be copy-pasted
into the ZX-calculus Discord server.

	Return type

	str

	
to_graph(zh=False, compress_rows=True, backend=None)

	Turns the circuit into a ZX-Graph.
If compress_rows is set, it tries to put single qubit gates on different qubits,
on the same row.

	Return type

	BaseGraph

	
to_matrix(preserve_scalar=True)

	Returns a numpy matrix describing the circuit.

	Return type

	ndarray

	
to_qasm()

	Produces a QASM description of the circuit.

	Return type

	str

	
to_qc()

	Produces a .qc description of the circuit.

	Return type

	str

	
to_quipper()

	Produces a Quipper ASCII description of the circuit.

	Return type

	str

	
to_tensor(preserve_scalar=True)

	Returns a numpy tensor describing the circuit.

	Return type

	ndarray

	
twoqubitcount()

	Returns the amount of 2-qubit gates necessary to implement this circuit.

	Return type

	int

	
verify_equality(other, up_to_swaps=False)

	Composes the other circuit with the adjoint of this circuit, and tries to reduce
it to the identity using simplify.full_reduce`. If successful returns True,
if not returns None.

Note

A successful reduction to the identity is strong evidence that the two
circuits are equal, if this function is not able to reduce the graph to the identity
this does not prove anything.

	Parameters

	
	other (Circuit) – the circuit to compare equality to.

	up_to_swaps (bool) – if set to True, only checks equality up to a permutation of the qubits.

	Return type

	bool

Generating Circuits

The following are some methods to generate (random) quantum circuits.

	
CNOT_HAD_PHASE_circuit(qubits, depth, p_had=0.2, p_t=0.2, clifford=False)

	Construct a Circuit consisting of CNOT, HAD and phase gates.
The default phase gate is the T gate, but if clifford=True, then
this is replaced by the S gate.

	Parameters

	
	qubits (int) – number of qubits of the circuit

	depth (int) – number of gates in the circuit

	p_had (float) – probability that each gate is a Hadamard gate

	p_t (float) – probability that each gate is a T gate (or if clifford is set, S gate)

	clifford (bool) – when set to True, the phase gates are S gates instead of T gates.

	Return type

	Circuit

	Returns

	A random circuit consisting of Hadamards, CNOT gates and phase gates.

	
cliffordT(qubits, depth, p_t=None, p_s=None, p_hsh=None, p_cnot=None, backend=None)

	Generates a circuit consisting of randomly placed Clifford+T gates. Optionally, take
probabilities of adding T, S, HSH, and CNOT. If probabilities for only a subset of gates
is given, any remaining probability will be uniformly distributed among the remaining
gates.

	Parameters

	
	qubits (int) – Amount of qubits in circuit.

	depth (int) – Depth of circuit.

	p_t (Optional[float]) – Probability that each gate is a T-gate.

	p_s (Optional[float]) – Probability that each gate is a S-gate.

	p_hsh (Optional[float]) – Probability that each gate is a HSH-gate.

	p_cnot (Optional[float]) – Probability that each gate is a CNOT-gate.

	backend (Optional[str]) – When given, should be one of the possible Backends backends.

	Return type

	Instance of graph of the given backend.

	
cliffordTmeas(qubits, depth, p_t=None, p_s=None, p_hsh=None, p_cnot=None, p_meas=None, backend=None)

	Generates a circuit consisting of randomly placed Clifford+T gates. Optionally, take
probabilities of adding T, S, HSH, CNOT, and measurements.
If probabilities for only a subset of gates is given, any remaining probability will be
uniformly distributed among the remaining gates.

	Parameters

	
	qubits (int) – Amount of qubits in circuit.

	depth (int) – Depth of circuit.

	p_t (Optional[float]) – Probability that each gate is a T-gate.

	p_s (Optional[float]) – Probability that each gate is a S-gate.

	p_hsh (Optional[float]) – Probability that each gate is a HSH-gate.

	p_cnot (Optional[float]) – Probability that each gate is a CNOT-gate.

	p_meas (Optional[float]) – Probability that each gate is a measurement.

	backend (Optional[str]) – When given, should be one of the possible Backends backends.

	Return type

	Instance of graph of the given backend.

	
cliffords(qubits, depth, no_hadamard=False, t_gates=False, backend=None)

	Generates a circuit consisting of randomly placed Clifford gates.
Uses a different approach to generating Clifford circuits then cliffordT.

	Parameters

	
	qubits (int) – Amount of qubits in circuit.

	depth (int) – Depth of circuit.

	no_hadamard (bool) – Whether hadamard edges are allowed to be placed.

	backend (Optional[str]) – When given, should be one of the possible Backends backends.

	Return type

	Instance of graph of the given backend.

	
cnots(qubits, depth, backend=None)

	Generates a circuit consisting of randomly placed CNOT gates.

Args:
qubits: Amount of qubits in circuit
depth: Depth of circuit
backend: When given, should be one of the possible Backends backends.

	Return type

	BaseGraph

	Returns

	Instance of graph of the given backend

	
identity(qubits, depth=1, backend=None)

	Generates a pyzx.graph.Graph representing an identity circuit.

	Parameters

	
	qubits (int) – number of qubits (i.e. parallel lines of the Graph)

	depth (Union[float, int]) – at which row the output vertices should be placed

	backend (Optional[str]) – the backend to use for the output graph

	Return type

	BaseGraph

	
phase_poly(n_qubits, n_phase_layers, cnots_per_layer)

	Create a random phase polynomial circuit.

	Parameters

	
	n_qubits (int) – Number of qubits in the circuit.

	n_phase_layers (int) – Number of layers of phase gates.

	cnots_per_layer (int) – Number of CNOTs in each layer.

	Return type

	Circuit

	Returns

	A random phase polynomial circuit.

	
phase_poly_approximate(n_qubits, n_CNOTs, n_phases)

	Create a random phase polynomial circuit with an exact number of CNOT gates.

	Parameters

	
	n_qubits (int) – Number of qubits in the circuit.

	n_CNOTs (int) – Number of CNOTs in the circuit.

	n_phases (int) – Target of phase gates in the circuit. The actual number of phase gates may be slightly different.

	Return type

	Circuit

	Returns

	A random phase polynomial circuit.

	
phase_poly_from_gadgets(n_qubits, n_gadgets)

	Create a random phase polynomial circuit from a set of phase gadgets.

	Parameters

	
	n_qubits (int) – Number of qubits in the circuit.

	n_gadgets (int) – Number of phase gadgets to generate.

	Return type

	Circuit

	Returns

	A random phase polynomial circuit.

Circuit extraction and matrices over Z2

There is basically a single function that is needed for the most general extraction of a circuit from a ZX-diagram:

	
extract_circuit(g, optimize_czs=True, optimize_cnots=2, up_to_perm=False, quiet=True)

	Given a graph put into semi-normal form by full_reduce,
it extracts its equivalent set of gates into an instance of Circuit.
This function implements a more optimized version of the algorithm described in
There and back again: A circuit extraction tale [https://arxiv.org/abs/2003.01664]

	Parameters

	
	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – The ZX-diagram graph to be extracted into a Circuit.

	optimize_czs (bool) – Whether to try to optimize the CZ-subcircuits by exploiting overlap between the CZ gates

	optimize_cnots (int) – (0,1,2,3) Level of CNOT optimization to apply.

	up_to_perm (bool) – If true, returns a circuit that is equivalent to the given graph up to a permutation of the inputs.

	quiet (bool) – Whether to print detailed output of the extraction process.

	Return type

	Circuit

This function uses some reasoning over matrices over the field Z2. This functionality is implemented in the following class.

	
class Mat2(data)

	A matrix over Z2, with methods for multiplication, primitive row and column
operations, Gaussian elimination, rank, and epi-mono factorisation.

	
col_add(c0, c1)

	Add r0 to r1

	Return type

	None

	
col_swap(c0, c1)

	Swap the columns c0 and c1

	Return type

	None

	
factor()

	Produce a factorisation m = m0 * m1, where

m0.cols() = m1.rows() = m.rank()

	Return type

	Tuple[Mat2, Mat2]

	
gauss(full_reduce=False, x=None, y=None, blocksize=6, pivot_cols=[])

	Compute the echelon form. Returns the number of non-zero rows in the result, i.e.
the rank of the matrix.

The parameter ‘full_reduce’ determines whether to compute the full row-reduced form,
useful e.g. for matrix inversion and CNOT circuit synthesis.

The parameter ‘blocksize’ gives the size of the blocks in a block matrix for
performing Patel/Markov/Hayes optimization, see:

K. Patel, I. Markov, J. Hayes. Optimal Synthesis of Linear Reversible
Circuits. QIC 2008

If blocksize is given as self.cols(), then
this is equivalent to just eliminating duplicate rows before doing normal
Gaussian elimination.

Contains two convenience parameters for saving the primitive row operations. Suppose
the row-reduced form of m is computed as:

g * m = m’

Then, x –> g * x and y –> y * g^-1.

Note x and y need not be matrices. x can be any object that implements the method
row_add(), and y any object that implements col_add().

	Return type

	int

	
inverse()

	Returns the inverse of m is invertible and None otherwise.

	Return type

	Optional[Mat2]

	
nullspace(should_copy=True)

	Returns a list of non-zero vectors that span the nullspace
of the matrix. If the matrix has trivial kernel it returns the empty list.

	Return type

	List[List[Literal[0, 1]]]

	
permute_cols(p)

	Permute the columns of the matrix according to the permutation p.

	Return type

	None

	
permute_rows(p)

	Permute the rows of the matrix according to the permutation p.

	Return type

	None

	
rank()

	Returns the rank of the matrix.

	Return type

	int

	
row_add(r0, r1)

	Add r0 to r1

	Return type

	None

	
row_swap(r0, r1)

	Swap the rows r0 and r1

	Return type

	None

	
solve(b)

	Return a vector x such that M * x = b, or None if there is no solution.

	Return type

	Optional[Mat2]

	
to_cnots(optimize=False, use_log_blocksize=False)

	Returns a list of CNOTs that implements the matrix as a reversible circuit of qubits.

	Return type

	List[CNOT]

List of simplifications

Below is listed the content of simplify.py.

This module contains the ZX-diagram simplification strategies of PyZX.
Each strategy is based on applying some combination of the rewrite rules in the rules module.
The main procedures of interest are clifford_simp for simple reductions,
full_reduce for the full rewriting power of PyZX, and teleport_reduce to
use the power of full_reduce while not changing the structure of the graph.

	
simp(g, name, match, rewrite, matchf=None, quiet=False, stats=None)

	Helper method for constructing simplification strategies based on the rules present in rules.
It uses the match function to find matches, and then rewrites g using rewrite.
If matchf is supplied, only the vertices or edges for which matchf() returns True are considered for matches.

Example

simp(g, 'spider_simp', rules.match_spider_parallel, rules.spider)

	Parameters

	
	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – The graph that needs to be simplified.

	name (str) – The name to display if quiet is set to False.

	match (Callable[..., List[TypeVar(MatchObject)]]) – One of the match_* functions of rules.

	rewrite (Callable[[BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)], List[TypeVar(MatchObject)]], Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]]) – One of the rewrite functions of rules.

	matchf (Union[Callable[[TypeVar(ET)], bool], Callable[[TypeVar(VT, bound= int)], bool], None]) – An optional filtering function on candidate vertices or edges, which
is passed as the second argument to the match function.

	quiet (bool) – Suppress output on numbers of matches found during simplification.

	Return type

	int

	Returns

	Number of iterations of rewrite that had to be applied before no more matches were found.

	
bialg_simp(g, quiet=False, stats=None)

	
	Return type

	int

	
clifford_simp(g, quiet=True, stats=None)

	Keeps doing rounds of interior_clifford_simp and
pivot_boundary_simp until they can’t be applied anymore.

	Return type

	int

	
full_reduce(g, quiet=True, stats=None)

	The main simplification routine of PyZX. It uses a combination of clifford_simp and
the gadgetization strategies pivot_gadget_simp and gadget_simp.

	Return type

	None

	
gadget_simp(g, quiet=False, stats=None)

	
	Return type

	int

	
id_simp(g, matchf=None, quiet=False, stats=None)

	
	Return type

	int

	
lcomp_simp(g, matchf=None, quiet=False, stats=None)

	
	Return type

	int

	
phase_free_simp(g, quiet=False, stats=None)

	Performs the following set of simplifications on the graph:
spider -> bialg

	Return type

	int

	
pivot_boundary_simp(g, matchf=None, quiet=False, stats=None)

	
	Return type

	int

	
pivot_gadget_simp(g, matchf=None, quiet=False, stats=None)

	
	Return type

	int

	
pivot_simp(g, matchf=None, quiet=False, stats=None)

	
	Return type

	int

	
reduce_scalar(g, quiet=True, stats=None)

	Modification of full_reduce that is tailered for scalar ZX-diagrams.
It skips the boundary pivots, and it additionally does supplementarity_simp.

	Return type

	int

	
spider_simp(g, matchf=None, quiet=False, stats=None)

	
	Return type

	int

	
supplementarity_simp(g, quiet=False, stats=None)

	
	Return type

	int

	
tcount(g)

	Returns the amount of nodes in g that have a non-Clifford phase.

	Return type

	int

	
teleport_reduce(g, quiet=True, stats=None)

	This simplification procedure runs full_reduce in a way
that does not change the graph structure of the resulting diagram.
The only thing that is different in the output graph are the location and value of the phases.

	Return type

	BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]

	
to_gh(g, quiet=True)

	Turns every red node into a green node by changing regular edges into hadamard edges

	Return type

	None

	
to_rg(g, select=None)

	Turn green nodes into red nodes by color-changing vertices which satisfy the predicate select.
By default, the predicate is set to greedily reducing the number of Hadamard-edges.
:type g: BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]
:param g: A ZX-graph.
:type select: Optional[Callable[[TypeVar(VT, bound= int)], bool]]
:param select: A function taking in vertices and returning True or False.

	Return type

	None

List of rewrite rules

Below is listed the content of rules.py.

This module contains the implementation of all the rewrite rules on ZX-diagrams in PyZX.

Each rewrite rule consists of two methods: a matcher and a rewriter.
The matcher finds as many non-overlapping places where the rewrite rule can be applied.
The rewriter takes in a list of matches, and performs the necessary changes on the graph to implement the rewrite.

Each match function takes as input a Graph instance,
and an optional “filter function” that tells the matcher to only consider
the vertices or edges that the filter function accepts.
It outputs a list of “match” objects. What these objects look like differs
per rewrite rule.

The rewrite function takes as input a Graph instance and a list of match objects
of the appropriate type. It outputs a 4-tuple
(edges to add, vertices to remove, edges to remove, isolated vertices check).
The first of these should be fed to add_edge_table,
while the second and third should be fed to
remove_vertices and remove_edges.
The last parameter is a Boolean that when true means that the rewrite rule can introduce
isolated vertices that should be removed by
remove_isolated_vertices.

Dealing with this output is done using either apply_rule or pyzx.simplify.simp.

Warning

There is no guarantee that the matcher does not affect the graph, and currently some matchers
do in fact change the graph. Similarly, the rewrite function also changes the graph other
than through the output it generates (for instance by adding vertices or changes phases).

	
apply_copy(g, matches)

	
	Return type

	Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]

	
apply_gadget_phasepoly(g, matches)

	Uses the output of match_gadgets_phasepoly to apply a rewrite based
on rule R_13 of the paper A Finite Presentation of CNOT-Dihedral Operators.

	Return type

	None

	
apply_rule(g, rewrite, m, check_isolated_vertices=True)

	
	Return type

	None

	
apply_supplementarity(g, matches)

	Given the output of :func:match_supplementarity, removes non-Clifford spiders that act on the same set of targets trough supplementarity.

	Return type

	Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]

	
bialg(g, matches)

	Performs a certain type of bialgebra rewrite given matchings supplied by
match_bialg(_parallel).

	Return type

	Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]

	
lcomp(g, matches)

	Performs a local complementation based rewrite rule on the given graph with the
given matches returned from match_lcomp(_parallel). See “Graph Theoretic
Simplification of Quantum Circuits using the ZX calculus” (arXiv:1902.03178)
for more details on the rewrite

	Return type

	Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]

	
match_bialg(g)

	Does the same as match_bialg_parallel but with num=1.

	Return type

	List[Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int), List[TypeVar(VT, bound= int)], List[TypeVar(VT, bound= int)]]]

	
match_bialg_parallel(g, matchf=None, num=-1)

	Finds noninteracting matchings of the bialgebra rule.

	Parameters

	
	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – An instance of a ZX-graph.

	matchf (Optional[Callable[[TypeVar(ET)], bool]]) – An optional filtering function for candidate edge, should
return True if a edge should considered as a match. Passing None will
consider all edges.

	num (int) – Maximal amount of matchings to find. If -1 (the default)
tries to find as many as possible.

	Return type

	List of 4-tuples (v1, v2, neighbors_of_v1,neighbors_of_v2)

	
match_copy(g, vertexf=None)

	Finds spiders with a 0 or pi phase that have a single neighbor,
and copies them through. Assumes that all the spiders are green and maximally fused.

	Return type

	List[Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int), Union[Fraction, int], Union[Fraction, int], List[TypeVar(VT, bound= int)]]]

	
match_gadgets_phasepoly(g)

	Finds groups of phase-gadgets that act on the same set of 4 vertices in order to apply a rewrite based on
rule R_13 of the paper A Finite Presentation of CNOT-Dihedral Operators.

	Return type

	List[Tuple[List[TypeVar(VT, bound= int)], Dict[FrozenSet[TypeVar(VT, bound= int)], Union[TypeVar(VT, bound= int), Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int)]]]]]

	
match_ids(g)

	Finds a single identity node. See match_ids_parallel.

	Return type

	List[Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int), TypeVar(VT, bound= int), Literal[1, 2]]]

	
match_ids_parallel(g, vertexf=None, num=-1)

	Finds non-interacting identity vertices.

	Parameters

	
	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – An instance of a ZX-graph.

	num (int) – Maximal amount of matchings to find. If -1 (the default)
tries to find as many as possible.

	vertexf (Optional[Callable[[TypeVar(VT, bound= int)], bool]]) – An optional filtering function for candidate vertices, should
return True if a vertex should be considered as a match. Passing None will
consider all vertices.

	Return type

	List of 4-tuples (identity_vertex, neighbor1, neighbor2, edge_type).

	
match_lcomp(g)

	Same as match_lcomp_parallel, but with num=1

	Return type

	List[Tuple[TypeVar(VT, bound= int), List[TypeVar(VT, bound= int)]]]

	
match_lcomp_parallel(g, vertexf=None, num=-1, check_edge_types=True)

	Finds noninteracting matchings of the local complementation rule.

	Parameters

	
	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – An instance of a ZX-graph.

	num (int) – Maximal amount of matchings to find. If -1 (the default)
tries to find as many as possible.

	check_edge_types (bool) – Whether the method has to check if all the edges involved
are of the correct type (Hadamard edges).

	vertexf (Optional[Callable[[TypeVar(VT, bound= int)], bool]]) – An optional filtering function for candidate vertices, should
return True if a vertex should be considered as a match. Passing None will
consider all vertices.

	Return type

	List of 2-tuples (vertex, neighbors).

	
match_phase_gadgets(g)

	Determines which phase gadgets act on the same vertices, so that they can be fused together.

	Parameters

	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – An instance of a ZX-graph.

	Return type

	List of 5-tuples (axel,leaf, total combined phase, other axels with same targets, other leafs).

	
match_pivot(g)

	Does the same as match_pivot_parallel but with num=1.

	Return type

	List[Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int), List[TypeVar(VT, bound= int)], List[TypeVar(VT, bound= int)]]]

	
match_pivot_boundary(g, matchf=None, num=-1)

	Like match_pivot_parallel, but except for pairings of
Pauli vertices, it looks for a pair of an interior Pauli vertex and a
boundary non-Pauli vertex in order to gadgetize the non-Pauli vertex.

	Return type

	List[Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int), List[TypeVar(VT, bound= int)], List[TypeVar(VT, bound= int)]]]

	
match_pivot_gadget(g, matchf=None, num=-1)

	Like match_pivot_parallel, but except for pairings of
Pauli vertices, it looks for a pair of an interior Pauli vertex and an
interior non-Clifford vertex in order to gadgetize the non-Clifford vertex.

	Return type

	List[Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int), List[TypeVar(VT, bound= int)], List[TypeVar(VT, bound= int)]]]

	
match_pivot_parallel(g, matchf=None, num=-1, check_edge_types=True)

	Finds non-interacting matchings of the pivot rule.

	Parameters

	
	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – An instance of a ZX-graph.

	num (int) – Maximal amount of matchings to find. If -1 (the default)
tries to find as many as possible.

	check_edge_types (bool) – Whether the method has to check if all the edges involved
are of the correct type (Hadamard edges).

	matchf (Optional[Callable[[TypeVar(ET)], bool]]) – An optional filtering function for candidate edge, should
return True if a edge should considered as a match. Passing None will
consider all edges.

	Return type

	List of 4-tuples. See pivot for the details.

	
match_spider(g)

	Does the same as match_spider_parallel but with num=1.

	Return type

	List[Tuple[TypeVar(VT, bound= int), TypeVar(VT, bound= int)]]

	
match_spider_parallel(g, matchf=None, num=-1)

	Finds non-interacting matchings of the spider fusion rule.

	Parameters

	
	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – An instance of a ZX-graph.

	matchf (Optional[Callable[[TypeVar(ET)], bool]]) – An optional filtering function for candidate edge, should
return True if the edge should be considered for matchings. Passing None will
consider all edges.

	num (int) – Maximal amount of matchings to find. If -1 (the default)
tries to find as many as possible.

	Return type

	List of 2-tuples (v1, v2)

	
match_supplementarity(g)

	Finds pairs of non-Clifford spiders that are connected to exactly the same set of vertices.

	Parameters

	g (BaseGraph[TypeVar(VT, bound= int), TypeVar(ET)]) – An instance of a ZX-graph.

	Return type

	List of 4-tuples (vertex1, vertex2, type of supplementarity, neighbors).

	
merge_phase_gadgets(g, matches)

	Given the output of :func:match_phase_gadgets, removes phase gadgets that act on the same set of targets.

	Return type

	Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]

	
pivot(g, matches)

	Perform a pivoting rewrite, given a list of matches as returned by
match_pivot(_parallel). A match is itself a list where:

m[0] : first vertex in pivot.
m[1] : second vertex in pivot.
m[2] : list of zero or one boundaries adjacent to m[0].
m[3] : list of zero or one boundaries adjacent to m[1].

	Return type

	Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]

	
remove_ids(g, matches)

	Given the output of match_ids(_parallel), returns a list of edges to add,
and vertices to remove.

	Return type

	Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]

	
spider(g, matches)

	Performs spider fusion given a list of matchings from match_spider(_parallel)

	Return type

	Tuple[Dict[TypeVar(ET), List[int]], List[TypeVar(VT, bound= int)], List[TypeVar(ET)], bool]

	
unspider(g, m, qubit=-1, row=-1)

	Undoes a single spider fusion, given a match m. A match is a list with 3
elements given by:

m[0] : a vertex to unspider
m[1] : the neighbors of the new node, which should be a subset of the
 neighbors of m[0]
m[2] : the phase of the new node. If omitted, the new node gets all of the phase of m[0]

Returns the index of the new node. Optional parameters qubit and row can be used
to position the new node. If they are omitted, they are set as the same as the old node.

	Return type

	TypeVar(VT, bound= int)

List of optimization functions

Below is listed the content of optimize.py.

This module implements several optimization methods on Circuits.
The function basic_optimization runs a set of back-and-forth gate commutation and cancellation routines.
phase_block_optimize does phase polynomial optimization using the TODD algorithm,
and full_optimize combines these two methods.

	
basic_optimization(circuit, do_swaps=True, quiet=True)

	Optimizes the circuit using a strategy that involves delayed placement of gates
so that more matches for gate cancellations are found. Specifically tries to minimize
the number of Hadamard gates to improve the effectiveness
of phase-polynomial optimization techniques.

	Parameters

	
	circuit (Circuit) – Circuit to be optimized.

	do_swaps (bool) – When set uses some rules transforming CNOT gates into SWAP gates. Generally leads to better results, but messes up architecture-aware placement of 2-qubit gates.

	quiet (bool) – Whether to print some progress indicators.

	Return type

	Circuit

	
full_optimize(circuit, quiet=True)

	Optimizes the circuit using first some basic commutation and cancellation rules,
and then a dedicated phase polynomial optimization strategy involving the TODD algorithm.

	Parameters

	
	circuit (Circuit) – Circuit to be optimized.

	quiet (bool) – Whether to print some progress indicators.

	Return type

	Circuit

	
phase_block_optimize(circuit, pre_optimize=True, quiet=True)

	Optimizes the given circuit, by cutting it into phase polynomial pieces, and
using the TODD algorithm [https://iopscience.iop.org/article/10.1088/2058-9565/aad604/meta]
to optimize each of these phase polynomials.
The phase-polynomial circuits are then resynthesized using the
parity network [https://iopscience.iop.org/article/10.1088/2058-9565/aad8ca/meta] algorithm.

Note

Only works with Clifford+T circuits. Will give wrong output when fed smaller rotation gates, or Toffoli-like gates.
Depending on the number of qubits and T-gates this function can take a long time to run.
It can be sped up somewhat by using the TOpt implementation of TODD [https://github.com/Luke-Heyfron/TOpt].
If this is installed, point towards it using zx.settings.topt_command, such as for instance
zx.settings.topt_command = ['wsl', '../TOpt'] for running it in the Windows Subsystem for Linux.

	Parameters

	
	circuit (Circuit) – The circuit to be optimized.

	pre_optimize (bool) – Whether to call basic_optimization first.

	quiet (bool) – Whether to print some progress indicators. Helpful when execution time is long.

	Return type

	Circuit

List of routing functions

Below is listed the content of routing.py.

This module implements Architecture aware routing methods for Circuit s.

	
create_architecture(name, **kwargs)

	Creates an architecture from a name.

	Parameters

	
	name (Union[str, Architecture]) – The name of the architecture, see pyzx.routing.architectures for the available constants.

	kwargs – Additional arguments to pass to the architecture constructor.

	Return type

	Architecture

	Returns

	The architecture.

	
class Architecture(name, coupling_graph=None, coupling_matrix=None, backend=None, qubit_map=None, reduce_order=None, **kwargs)

	Class that represents the architecture of the qubits to be taken into account when routing.

	
qubit2vertex(qubit)

	Get the internal graph vertex index for a logical architecture qubit.

	Return type

	int

	
vertex2qubit(vertex)

	Get the logical architecture qubit for an internal graph vertex index.

	Return type

	int

	
pre_calc_distances()

	Pre-calculates the distances between all pairs of qubits in the architecture.

	Return type

	Dict[Literal['upper', 'full'], List[Dict[Tuple[int, int], Tuple[int, List[Tuple[int, int]]]]]]

	Returns

	The computed distances. distances[“upper”|”full”][until][(v1,v2)] contains the distance between v1 and v2, and the shortest path, where
upper|full indicates whether to consider bidirectional edges or not (respectively),
until indicates the number of qubits to consider, for “full” the distance is calculated only between qubits with index <= until),
and for “upper” the distance is calculated only between qubits with index >= until)

	
pre_calc_non_cutting_vertices()

	

	
non_cutting_vertices(subgraph_vertices, pre_calc=False)

	Find the non-cutting vertices for this subgraph

	Return type

	List[int]

	
get_neighboring_qubits(qubit)

	
	Return type

	Set[int]

	
get_neighboring_vertices(vertex)

	
	Return type

	Set[int]

	
to_quil_device()

	

	
visualize(filename=None)

	

	
floyd_warshall(subgraph_vertices, upper=True, rec_vertices=[])

	Implementation of the Floyd-Warshall algorithm to calculate the all-pair distances in a given graph

	Parameters

	
	subgraph_vertices (List[int]) – Subset of vertices to consider

	upper (bool) – Whether use bidirectional edges or only ordered edges (src, tgt) such that src > tgt, default True

	rec_vertices (List[int]) – A subgraph for which edges are considered undirected, as if the upper flag was set

	Return type

	Dict[Tuple[int, int], Tuple[int, List[Tuple[int, int]]]]

	Returns

	A dict with for each pair of qubits in the graph, a tuple with their distance and the corresponding shortest path

	
shortest_path(start_qubit, end_qubit, qubits_to_use=None)

	
	Return type

	Optional[List[int]]

	
steiner_tree(start_qubit, qubits_to_use, upper=True)

	Approximates the steiner tree given the architecture, a root qubit and the other qubits that should be present.
This is done using the pre-calculated all-pairs shortest distance and Prim’s algorithm for creating a minimum spanning tree
:type start_qubit: int
:param start_qubit: The index of the root qubit to be used
:type qubits_to_use: List[int]
:param qubits_to_use: The indices of the other qubits that should be present in the steiner tree
:rtype: Iterator[Optional[Tuple[int, int]]]

	Parameters

	upper (bool) – Whether to consider only the nodes
the steiner tree is used for creating an upper triangular matrix or a full reduction.

	Yields

	First yields all edges from the tree top-to-bottom, finished with None, then yields all edges from the tree bottom-up, finished with None.

	
rec_steiner_tree(start_qubit, terminal_qubits, usable_qubits, rec_qubits, upper=True)

	

	
transpose()

	

	
arities()

	Returns a list of tuples (i, arity) where i is the index of each node and arity is the number of neighbors,
sorted by decreasing arity.

	Return type

	List[Tuple[int, int]]

	
class Parity(par, n_qubits=None)

	A set of qubits XORed together.

	
parity: List[bool]

	

	
count()

	Returns the number of qubits interacting in the parity.

	Return type

	int

	
n_qubits()

	Returns the total number of qubits.

	Return type

	int

	
to_mat2_row()

	
	Return type

	List[Literal[0, 1]]

	
class CNOT_tracker(n_qubits, **kwargs)

	A circuit-like object that keeps track of row and column operations
applied during Gauss elimination via CNOT gates.

	
matrix: Mat2

	The qubit parity matrix computed from the CNOT gates.

	
row_perm: ndarray

	The row permutation of the qubit parity matrix.

	
col_perm: ndarray

	The column permutation of the qubit parity matrix.

	
count_cnots()

	Returns the number of CNOT gates in the tracker.

	Return type

	int

	
cnot_depth()

	Returns the CNOT/CZ depth of the tracked circuit.

	Return type

	int

	
row_add(q0, q1)

	Track a row addition operation on the matrix

	
add_gate(gate, *args, **kwargs)

	Adds a gate to the circuit. gate can either be
an instance of a Gate, or it can be the name of a gate,
in which case additional arguments should be given.

Example:

circuit.add_gate("CNOT", 1, 4) # adds a CNOT gate with control 1 and target 4
circuit.add_gate("ZPhase", 2, phase=Fraction(3,4)) # Adds a ZPhase gate on qubit 2 with phase 3/4

	
col_add(q0, q1)

	Track a column addition operation on the matrix

	
static get_metric_names()

	Metric names for the CNOT tracker.

	Return type

	List[str]

	
gather_metrics()

	Gather metrics for the CNOT tracker.

	Return type

	Dict[str, int]

	
prepend_gate(gate, *args, **kwargs)

	Adds a gate to the circuit. gate can either be
an instance of a Gate, or it can be the name of a gate,
in which case additional arguments should be given.

Example:

circuit.add_gate("CNOT", 1, 4) # adds a CNOT gate with control 1 and target 4
circuit.add_gate("ZPhase", 2, phase=Fraction(3,4)) # Adds a ZPhase gate on qubit 2 with phase 3/4

	
to_qasm()

	Produces a QASM description of the circuit.

	Return type

	str

	
static from_circuit(circuit)

	
	Return type

	CNOT_tracker

	
update_matrix()

	Rebuilds the parity matrix from the gates in the circuit.

	
static from_qasm_file(fname)

	Produces a Circuit based on a QASM description of a circuit.
It ignores all the non-unitary instructions like measurements in the file.
It currently doesn’t support custom gates that have parameters.

	Return type

	CNOT_tracker

	
class ElimMode(value)

	Row elimination modes for the cnot mapper procedures

	
GAUSS_MODE = 'gauss'

	Gaussian elimination, ignoring the architecture.

	
STEINER_MODE = 'steiner'

	Steiner tree based Gaussian elimination, optimizing the number of SWAPs
operations required to synthesize the CNOTs on the restricted
architecture.

	
GENETIC_GAUSS_MODE = 'genetic_gauss'

	Gauss elimination using a genetic algorithm to find the best row permutation.

	
GENETIC_STEINER_MODE = 'genetic_steiner'

	Steiner Gauss elimination using a genetic algorithm to find the best row permutation.

	
PSO_GAUSS_MODE = 'pso_gauss'

	Gauss elimination using Particle Swarm Optimization to find the best row permutation.

	
PSO_STEINER_MODE = 'pso_steiner'

	Steiner Gauss elimination using Particle Swarm Optimization to find the best row permutation.

	
class CostMetric(value)

	Metrics for the cost of the gates needed for a given permutation,
used by the cnot mapper fitness functions.

	
COMBINED = 'combined'

	Count both the number of CNOTs and the depth of the circuit

	
DEPTH = 'depth'

	Count the number of CNOTs in the circuit

	
COUNT = 'count'

	Count the depth of the circuit

	
class FitnessFunction(metric, matrix, mode, architecture, row=True, col=True, full_reduce=True, **kwargs)

	A fitness function that calculates the cost of the gates needed for a given permutation.

	
gauss(mode, matrix, architecture=None, permutation=None, try_transpose=False, **kwargs)

	Performs architecture-aware Gaussian Elimination on a matrix.

	Parameters

	
	mode (Optional[ElimMode]) – Type of Gaussian elimination to be used, see ElimMode.

	matrix (Mat2) – Target matrix to be reduced.

	architecture (Optional[Architecture]) – Device architecture to take into account.

	permutation (Optional[List[int]]) – If given, reduce a permuted version of the matrix.

	kwargs – Other arguments that can be given to the Mat2.gauss function or parameters for the genetic algorithm.

	Return type

	int

	Returns

	The rank of the matrix. matrix is transformed inplace.

	
permuted_gauss(matrix, mode=None, architecture=None, population_size=30, crossover_prob=0.8, mutate_prob=0.2, n_iterations=5, row=True, col=True, full_reduce=True, fitness_func=None, x=None, y=None, **kwargs)

	Applies gaussian elimination to the given matrix, finding an optimal
permutation of the matrix to reduce the number of CNOT gates.

	Parameters

	
	matrix (Mat2) – Mat2 matrix to do gaussian elimination over

	mode (Optional[ElimMode]) – Elimination mode to use

	architecture (Optional[Architecture]) – Architecture to take into account

	population_size (int) – For the genetic algorithm

	crossover_prob (float) – For the genetic algorithm

	mutate_prob (float) – For the genetic algorithm

	n_iterations (int) – For the genetic algorithm

	row (bool) – If the rows should be permutedA

	col (bool) – If the columns should be permuted

	full_reduce (bool) – Whether to do full gaussian reduction

	fitness_func (Optional[FitnessFunction]) – Optional fitness function to use

	x – Optional tracker for the row operations

	y – Optional tracker for the column operations

	Return type

	Tuple[List[int], Circuit, int]

	Returns

	Best permutation found, list of CNOTS corresponding to the
elimination.

	
sequential_gauss(matrices, mode=None, architecture=None, fitness_func=None, input_perm=True, output_perm=True, swarm_size=15, n_steps=5, s_crossover=0.4, p_crossover=0.3, pso_mutation=0.2, full_reduce=True, **kwargs)

	Applies architecture-aware Gaussian elimination to multiple matrices,
sharing the optimization passes when using ParticleSwarmOptimization modes.

	Parameters

	
	matrix – List of matrices to do gaussian elimination over

	mode (Optional[ElimMode]) – Elimination mode to use

	architecture (Optional[Architecture]) – Architecture to take into account

	fitness_func (Optional[FitnessFunction]) – Optional fitness function to use

	input_perm (bool) – Allow input permutation

	output_perm (bool) – Whether the location of the output qubits can be
different for the input location. Qubit locations can be optimized with
pso.

	swarm_size (int) – Swarm size for the swarm optimization.

	n_steps (int) – The number of iterations for the particle swarm optimization.

	s_crossover (float) – The crossover percentage with the best particle in the swarm for the particle swarm optimizer. Must be between 0.0 and 1.0.

	p_crossover (float) – The crossover percentage with the personal best of a particle for the particle swarm optimizer. Must be between 0.0 and 1.0.

	pso_mutation (float) – The mutation percentage of a particle for the particle swarm optimizer. Must be between 0.0 and 1.0.

	full_reduce (bool) – Fully reduce the matrices

	Return type

	Tuple[List[CNOT_tracker], List[List[int]], int]

	Returns

	List of CNOT trackers corresponding to the eliminations, list of
final permutations for each matrix, and the cost of the eliminations.

	
steiner_gauss(matrix, architecture, full_reduce=False, x=None, y=None)

	Performs Gaussian elimination that is constrained by the given architecture

	Parameters

	
	matrix (Mat2) – PyZX Mat2 matrix to be reduced

	architecture (Architecture) – The Architecture object to conform to

	full_reduce (bool) – Whether to fully reduce or only create an upper triangular form

	x (Optional[CNOT_tracker]) – Optional CNOT_tracker object to track row operations

	y (Optional[CNOT_tracker]) – Optional CNOT_tracker object to track column operations

	Returns

	Rank of the given matrix

	
rec_steiner_gauss(matrix, architecture, full_reduce=False, x=None, y=None, permutation=None, **kwargs)

	Performs Gaussian elimination that is constrained bij the given architecture according to https://arxiv.org/pdf/1904.00633.pdf
Only works on full rank, square matrices.

	Parameters

	
	matrix (Mat2) – PyZX Mat2 matrix to be reduced

	architecture (Architecture) – The Architecture object to conform to

	full_reduce (bool) – Whether to fully reduce or only create an upper triangular form

	x (Optional[CNOT_tracker]) – Optional CNOT_tracker object to track row operations

	y (Optional[CNOT_tracker]) – Optional CNOT_tracker object to track column operations

	permutation (Optional[List[int]]) – Optional permutation of the qubits

	
class RoutingMethod(value)

	Phase polynomial routing method to use in route_phase_poly.

	
MATROID = 'matroid'

	Routing method based on matroid partitioning. Commonly slower than
RoutingMethod.GRAY and RoutingMethod.MEIJER.

	
GRAY = 'GraySynth'

	Routing method based on Gray synthesis (see arxiv.org/abs/1712.01859).

	
MEIJER = 'meijer'

	Routing method by Meijer and Duncan (see arxiv.org/abs/2004.06052).

	
GRAY_MEIJER = 'GraySynth+Meijer'

	Combination of RoutingMethod.GRAY and RoutingMethod.MEIJER, keeps the best result of both.

	
class RootHeuristic(value)

	Heuristics for choosing the root of a Steiner tree during phase polynomial routing.

	
RANDOM = 'gauss'

	Randomly choose a root.

	
EXHAUSTIVE = 'exhaustive'

	Try all possible roots and choose the one with the lowest cost.

	
ARITY = 'arity'

	Choose the root randomly between the nodes with highest arity.

	
RECURSIVE = 'recursive'

	Use an already-chosen root in a recursive call.

	
to_function()

	
	Return type

	Callable[[Architecture, Mat2, List[int], List[int], int, int, Any], List[int]]

	
class SplitHeuristic(value)

	Heuristics for choosing nodes to split a circuit during phase polynomial routing.

	
RANDOM = 'random'

	Randomly pick a candidate.

	
ARITY = 'arity'

	Split the circuit on the nodes with highest arity.

	
COUNT = 'count'

	Split the circuit on all the candidate nodes.

	
to_function()

	
	Return type

	Callable[[Architecture, Mat2, List[int], List[int], Any], List[int]]

	
route_phase_poly(circuit, architecture, method=RoutingMethod.GRAY_MEIJER, mode=ElimMode.STEINER_MODE, root_heuristic=RootHeuristic.RECURSIVE, split_heuristic=SplitHeuristic.COUNT, **kwargs)

	Compile a circuit to an architecture with restricted connectivity.

	Parameters

	
	circuit (Union[Circuit, PhasePoly]) – The circuit to compile.

	architecture (Architecture) – The target architecture.

	method (RoutingMethod) – The routing method to use.

	mode (ElimMode) – The elimination mode to use during the CNOT mapping step.

	split_heuristic (SplitHeuristic) – The heuristic to use for splitting the circuit into subcircuits.

	root_heuristic (RootHeuristic) – The heuristic to use for finding the root of the circuit.

	Return type

	Circuit

	Returns

	The compiled circuit.

Functions for dealing with tensors

Below is listed the content of tensor.py.

This module provides methods for converting ZX-graphs into numpy tensors
and using these tensors to test semantic equality of ZX-graphs.
This module is not meant as an efficient quantum simulator.
Due to the way the tensor is calculated it can only handle
circuits of small size before running out of memory on a regular machine.
Currently, it can reliably transform 9 qubit circuits into tensors.
If the ZX-diagram is not circuit-like, but instead has nodes with high degree,
it will run out of memory even sooner.

	
adjoint(t)

	Returns the adjoint of the tensor as if it were representing
a circuit:

t = tensorfy(circ)
tadj = tensorfy(circ.adjoint())
compare_tensors(adjoint(t),tadj) # This is True

	Return type

	ndarray

	
compare_tensors(t1, t2, preserve_scalar=False)

	Returns true if t1 and t2 represent equal tensors.
When preserve_scalar is False (the default), equality is checked up to nonzero rescaling.

Example: To check whether two ZX-graphs g1 and g2 are semantically the same you would do:

compare_tensors(g1,g2) # True if g1 and g2 represent the same linear map up to nonzero scalar

	Return type

	bool

	
compose_tensors(t1, t2)

	Returns a tensor that is the result of composing the tensors together as if they
were representing circuits:

t1 = tensorfy(circ1)
t2 = tensorfy(circ2)
circ1.compose(circ2)
t3 = tensorfy(circ1)
t4 = compose_tensors(t1,t2)
compare_tensors(t3,t4) # This is True

	Return type

	ndarray

	
find_scalar_correction(t1, t2)

	Returns the complex number z such that t1 = z*t2.
:rtype: complex

Warning

This function assumes that compare_tensors(t1,t2,preserve_scalar=False) is True,
i.e. that t1 and t2 indeed are equal up to global scalar.
If they aren’t, this function returns garbage.

	
is_unitary(g)

	Returns whether the given ZX-graph is equal to a unitary (up to a number).

	Return type

	bool

	
tensor_to_matrix(t, inputs, outputs)

	Takes a tensor generated by tensorfy and turns it into a matrix.
The inputs and outputs arguments specify the final shape of the matrix:
2^(outputs) x 2^(inputs)

	Return type

	ndarray

	
tensorfy(g, preserve_scalar=True)

	Takes in a Graph and outputs a multidimensional numpy array
representing the linear map the ZX-diagram implements.
Beware that quantum circuits take exponential memory to represent.

	Return type

	ndarray

Drawing

Below is listed the content of drawing.py.

	
arrange_scalar_diagram(g)

	
	Return type

	None

	
draw(g, labels=False, **kwargs)

	Draws the given Circuit or Graph.
Depending on the value of pyzx.settings.drawing_backend
either uses matplotlib or d3 to draw.

	Return type

	Any

	
draw_d3(g, labels=False, scale=None, auto_hbox=None, show_scalar=False, vdata=[])

	
	Return type

	Any

	
draw_matplotlib(g, labels=False, figsize=(8, 2), h_edge_draw='blue', show_scalar=False, rows=None)

	
	Return type

	Any

	
graphs_to_gif(graphs, filename, frame_duration=0.5)

	Given a list of graphs, outputs an animated gif showing them in sequence.

	Parameters

	
	graphs (List[BaseGraph]) – The list of Graph instances that should be made into a gif.

	filename (str) – the full filename of the output gif.

	frame_duration (float) – how long (in seconds) each frame should last.

Warning

This function requires imagio to be installed (pip install imageio).

	
matrix_to_latex(m)

	Converts a matrix into latex code.
Useful for pretty printing the matrix of a Circuit/Graph.

	Return type

	str

Example

Run this in a Jupyter notebook
from ipywidgets import Label
c = zx.Circuit(3)
display(Label(matrix_to_latex(c.to_matrix())))

	
print_matrix(m)

	Returns a Label() Jupyter widget
that displays a pretty latex representation of the given matrix.
Instead of a matrix, can also give a Circuit or Graph.

	Return type

	Label

Tikz and Quantomatic functionality

Below is listed the content of tikz.py.

Supplies methods to convert ZX-graphs to tikz files.
These tikz files are designed to be easily readable by the program Tikzit [https://tikzit.github.io].

	
tikz_to_graph(s, warn_overlap=True, fuse_overlap=True, ignore_nonzx=False, backend=None)

	Converts a tikz diagram into a pyzx Graph.
The tikz diagram is assumed to be one generated by Tikzit,
and hence should have a nodelayer and a edgelayer..

	Parameters

	
	s (str) – a string containing a well-defined Tikz diagram.

	warn_overlap (bool) – If True raises a Warning if two vertices have the exact same position.

	fuse_overlap (bool) – If True fuses two vertices that have the exact same position. Only has effect if fuse_overlap is False.

	ignore_nonzx (bool) – If True suppresses most errors about unknown vertex/edge types and labels.

	backend (Optional[str]) – Backend of the graph returned.

	Return type

	BaseGraph

Warning

	Vertices that might look connected in the output of the tikz are not necessarily connected
	at the level of tikz itself, and won’t be treated as such in pyzx.

	
tikzit(g, draw_scalar=False)

	Opens Tikzit with the graph g opened as a tikz diagram.
For this to work, zx.settings.tikzit_location must be pointed towards the Tikzit executable.
Even though this function is intended to be used with Tikzit, zx.tikz.tikzit_location
can point towards any executable that takes a tikz file as an input, such as a text processor.

	Return type

	None

	
to_tikz(g, draw_scalar=False)

	Converts a ZX-graph g to a string representing a tikz diagram.

	Return type

	str

	
to_tikz_sequence(graphs, draw_scalar=False, maxwidth=10)

	Given a list of ZX-graphs, outputs a single tikz diagram with the graphs presented in a grid.
maxwidth is the maximum width of the diagram, before a graph is put on a new row in the tikz diagram.

	Return type

	str

Below is listed the content of quantomatic.py.

Implements methods for interacting with Quantomatic:

import pyzx as zx
zx.settings.quantomatic_location = "path/to/quantomatic/jar/file.jar"
g = zx.generate.cliffordT(3,10,0.2)
g2 = zx.quantomatic.edit_graph(g) # Opens Quantomatic with the graph g opened. Execution is blocked until Quantomatic is closed again.
If you have saved the qgraph file in quantomatic, then g2 should now contain your changes.

	
edit_graph(g)

	Opens Quantomatic with the graph g loaded. When you are done editing the graph,
you save it in Quantomatic and close the executable. The resulting graph is returned by this function.
Note that this function blocks until the Quantomatic executable is closed. For this function to work
you must first set zx.settings.quantomatic_location to point towards the Quantomatic .jar file.

	Return type

	BaseGraph

 Python Module Index

 c |
 d |
 e |
 g |
 o |
 p |
 q |
 r |
 s |
 t

 		 	

 		
 c	

 	
 	
 circuit	

 		 	

 		
 d	

 	
 	
 drawing	

 		 	

 		
 e	

 	
 	
 extract	

 		 	

 		
 g	

 	
 	
 graph	

 		 	

 		
 o	

 	
 	
 optimize	

 		 	

 		
 p	

 	[image: -]
 	
 pyzx	

 	
 	
 pyzx.drawing	

 	
 	
 pyzx.generate	

 	
 	
 pyzx.optimize	

 	
 	
 pyzx.quantomatic	

 	
 	
 pyzx.routing	

 	
 	
 pyzx.rules	

 	
 	
 pyzx.simplify	

 	
 	
 pyzx.tensor	

 	
 	
 pyzx.tikz	

 		 	

 		
 q	

 	
 	
 quantomatic	

 		 	

 		
 r	

 	
 	
 routing	

 	
 	
 rules	

 		 	

 		
 s	

 	
 	
 simplify	

 		 	

 		
 t	

 	
 	
 tensor	

 	
 	
 tikz	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_circuit() (Circuit method)

 	add_edge() (BaseGraph method)

 	add_edge_smart() (BaseGraph method)

 	add_edge_table() (BaseGraph method)

 	add_edges() (BaseGraph method)

 	add_gate() (Circuit method)

 	(CNOT_tracker method)

 	add_gates() (Circuit method)

 	add_to_phase() (BaseGraph method)

 	add_vertex() (BaseGraph method)

 	add_vertices() (BaseGraph method)

 	adjoint() (BaseGraph method)

 	(in module pyzx.tensor)

 	
 	apply_copy() (in module pyzx.rules)

 	apply_effect() (BaseGraph method)

 	apply_gadget_phasepoly() (in module pyzx.rules)

 	apply_rule() (in module pyzx.rules)

 	apply_state() (BaseGraph method)

 	apply_supplementarity() (in module pyzx.rules)

 	Architecture (class in pyzx.routing)

 	arities() (Architecture method)

 	ARITY (RootHeuristic attribute)

 	(SplitHeuristic attribute)

 	arrange_scalar_diagram() (in module pyzx.drawing)

 	auto_detect_io() (BaseGraph method)

B

 	
 	BaseGraph (class in pyzx.graph.base)

 	basic_optimization() (in module pyzx.optimize)

 	
 	bialg() (in module pyzx.rules)

 	bialg_simp() (in module pyzx.simplify)

C

 	
 	
 circuit

 	module

 	Circuit (class in pyzx.circuit)

 	clifford_simp() (in module pyzx.simplify)

 	cliffords() (in module pyzx.generate)

 	cliffordT() (in module pyzx.generate)

 	cliffordTmeas() (in module pyzx.generate)

 	clone() (BaseGraph method)

 	cnot_depth() (CNOT_tracker method)

 	CNOT_HAD_PHASE_circuit() (in module pyzx.generate)

 	CNOT_tracker (class in pyzx.routing)

 	cnots() (in module pyzx.generate)

 	col_add() (CNOT_tracker method)

 	(Mat2 method)

 	
 	col_perm (CNOT_tracker attribute)

 	col_swap() (Mat2 method)

 	COMBINED (CostMetric attribute)

 	compare_tensors() (in module pyzx.tensor)

 	compose() (BaseGraph method)

 	compose_tensors() (in module pyzx.tensor)

 	connected() (BaseGraph method)

 	copy() (BaseGraph method)

 	CostMetric (class in pyzx.routing)

 	COUNT (CostMetric attribute)

 	(SplitHeuristic attribute)

 	count() (Parity method)

 	count_cnots() (CNOT_tracker method)

 	create_architecture() (in module pyzx.routing)

D

 	
 	DEPTH (CostMetric attribute)

 	depth() (BaseGraph method)

 	draw() (in module pyzx.drawing)

 	
 	draw_d3() (in module pyzx.drawing)

 	draw_matplotlib() (in module pyzx.drawing)

 	
 drawing

 	module

E

 	
 	edge() (BaseGraph method)

 	edge_s() (BaseGraph method)

 	edge_set() (BaseGraph method)

 	edge_st() (BaseGraph method)

 	edge_t() (BaseGraph method)

 	edge_type() (BaseGraph method)

 	
 	edges() (BaseGraph method)

 	edit_graph() (in module pyzx.quantomatic)

 	ElimMode (class in pyzx.routing)

 	EXHAUSTIVE (RootHeuristic attribute)

 	
 extract

 	module

 	extract_circuit() (in module pyzx.extract)

F

 	
 	factor() (Mat2 method)

 	find_scalar_correction() (in module pyzx.tensor)

 	FitnessFunction (class in pyzx.routing)

 	floyd_warshall() (Architecture method)

 	from_circuit() (CNOT_tracker static method)

 	from_graph() (Circuit static method)

 	from_json() (BaseGraph class method)

 	from_qasm() (Circuit static method)

 	
 	from_qasm_file() (Circuit static method)

 	(CNOT_tracker static method)

 	from_qc_file() (Circuit static method)

 	from_qsim_file() (Circuit static method)

 	from_quipper() (Circuit static method)

 	from_quipper_file() (Circuit static method)

 	from_tikz() (BaseGraph class method)

 	full_optimize() (in module pyzx.optimize)

 	full_reduce() (in module pyzx.simplify)

G

 	
 	gadget_simp() (in module pyzx.simplify)

 	gather_metrics() (CNOT_tracker method)

 	gauss() (in module pyzx.routing)

 	(Mat2 method)

 	GAUSS_MODE (ElimMode attribute)

 	GENETIC_GAUSS_MODE (ElimMode attribute)

 	GENETIC_STEINER_MODE (ElimMode attribute)

 	get_metric_names() (CNOT_tracker static method)

 	get_neighboring_qubits() (Architecture method)

 	
 	get_neighboring_vertices() (Architecture method)

 	
 graph

 	module

 	Graph() (in module pyzx.graph.graph)

 	GraphS (class in pyzx.graph.graph_s)

 	graphs_to_gif() (in module pyzx.drawing)

 	GRAY (RoutingMethod attribute)

 	GRAY_MEIJER (RoutingMethod attribute)

 	grounds() (BaseGraph method)

I

 	
 	id_simp() (in module pyzx.simplify)

 	identity() (in module pyzx.generate)

 	incident_edges() (BaseGraph method)

 	inputs() (BaseGraph method)

 	
 	inverse() (Mat2 method)

 	is_ground() (BaseGraph method)

 	is_hybrid() (BaseGraph method)

 	is_id() (BaseGraph method)

 	is_unitary() (in module pyzx.tensor)

L

 	
 	lcomp() (in module pyzx.rules)

 	
 	lcomp_simp() (in module pyzx.simplify)

 	load() (Circuit static method)

M

 	
 	Mat2 (class in pyzx.linalg)

 	match_bialg() (in module pyzx.rules)

 	match_bialg_parallel() (in module pyzx.rules)

 	match_copy() (in module pyzx.rules)

 	match_gadgets_phasepoly() (in module pyzx.rules)

 	match_ids() (in module pyzx.rules)

 	match_ids_parallel() (in module pyzx.rules)

 	match_lcomp() (in module pyzx.rules)

 	match_lcomp_parallel() (in module pyzx.rules)

 	match_phase_gadgets() (in module pyzx.rules)

 	match_pivot() (in module pyzx.rules)

 	match_pivot_boundary() (in module pyzx.rules)

 	match_pivot_gadget() (in module pyzx.rules)

 	match_pivot_parallel() (in module pyzx.rules)

 	match_spider() (in module pyzx.rules)

 	match_spider_parallel() (in module pyzx.rules)

 	match_supplementarity() (in module pyzx.rules)

 	matrix (CNOT_tracker attribute)

 	matrix_to_latex() (in module pyzx.drawing)

 	MATROID (RoutingMethod attribute)

 	MEIJER (RoutingMethod attribute)

 	merge() (BaseGraph method)

 	
 	merge_phase_gadgets() (in module pyzx.rules)

 	
 module

 	circuit

 	drawing

 	extract

 	graph

 	optimize

 	pyzx.drawing

 	pyzx.generate

 	pyzx.optimize

 	pyzx.quantomatic

 	pyzx.routing

 	pyzx.rules

 	pyzx.simplify

 	pyzx.tensor

 	pyzx.tikz

 	quantomatic

 	routing

 	rules

 	simplify

 	tensor

 	tikz

N

 	
 	n_qubits() (Parity method)

 	neighbors() (BaseGraph method)

 	non_cutting_vertices() (Architecture method)

 	normalize() (BaseGraph method)

 	
 	nullspace() (Mat2 method)

 	num_edges() (BaseGraph method)

 	num_inputs() (BaseGraph method)

 	num_outputs() (BaseGraph method)

 	num_vertices() (BaseGraph method)

O

 	
 	
 optimize

 	module

 	
 	outputs() (BaseGraph method)

P

 	
 	pack_circuit_rows() (BaseGraph method)

 	Parity (class in pyzx.routing)

 	parity (Parity attribute)

 	permute_cols() (Mat2 method)

 	permute_rows() (Mat2 method)

 	permuted_gauss() (in module pyzx.routing)

 	phase() (BaseGraph method)

 	phase_block_optimize() (in module pyzx.optimize)

 	phase_free_simp() (in module pyzx.simplify)

 	phase_poly() (in module pyzx.generate)

 	phase_poly_approximate() (in module pyzx.generate)

 	phase_poly_from_gadgets() (in module pyzx.generate)

 	phases() (BaseGraph method)

 	pivot() (in module pyzx.rules)

 	pivot_boundary_simp() (in module pyzx.simplify)

 	pivot_gadget_simp() (in module pyzx.simplify)

 	pivot_simp() (in module pyzx.simplify)

 	pre_calc_distances() (Architecture method)

 	pre_calc_non_cutting_vertices() (Architecture method)

 	prepend_gate() (Circuit method)

 	(CNOT_tracker method)

 	
 	print_matrix() (in module pyzx.drawing)

 	PSO_GAUSS_MODE (ElimMode attribute)

 	PSO_STEINER_MODE (ElimMode attribute)

 	
 pyzx.drawing

 	module

 	
 pyzx.generate

 	module

 	
 pyzx.optimize

 	module

 	
 pyzx.quantomatic

 	module

 	
 pyzx.routing

 	module

 	
 pyzx.rules

 	module

 	
 pyzx.simplify

 	module

 	
 pyzx.tensor

 	module

 	
 pyzx.tikz

 	module

Q

 	
 	
 quantomatic

 	module

 	qubit() (BaseGraph method)

 	
 	qubit2vertex() (Architecture method)

 	qubit_count() (BaseGraph method)

 	qubits() (BaseGraph method)

R

 	
 	RANDOM (RootHeuristic attribute)

 	(SplitHeuristic attribute)

 	rank() (Mat2 method)

 	rec_steiner_gauss() (in module pyzx.routing)

 	rec_steiner_tree() (Architecture method)

 	RECURSIVE (RootHeuristic attribute)

 	reduce_scalar() (in module pyzx.simplify)

 	remove_edge() (BaseGraph method)

 	remove_edges() (BaseGraph method)

 	remove_ids() (in module pyzx.rules)

 	remove_isolated_vertices() (BaseGraph method)

 	remove_vertex() (BaseGraph method)

 	remove_vertices() (BaseGraph method)

 	
 	replace_subgraph() (BaseGraph method)

 	RootHeuristic (class in pyzx.routing)

 	route_phase_poly() (in module pyzx.routing)

 	
 routing

 	module

 	RoutingMethod (class in pyzx.routing)

 	row() (BaseGraph method)

 	row_add() (CNOT_tracker method)

 	(Mat2 method)

 	row_perm (CNOT_tracker attribute)

 	row_swap() (Mat2 method)

 	rows() (BaseGraph method)

 	
 rules

 	module

S

 	
 	sequential_gauss() (in module pyzx.routing)

 	set_edge_type() (BaseGraph method)

 	set_ground() (BaseGraph method)

 	set_inputs() (BaseGraph method)

 	set_outputs() (BaseGraph method)

 	set_phase() (BaseGraph method)

 	set_phase_master() (BaseGraph method)

 	set_position() (BaseGraph method)

 	set_qubit() (BaseGraph method)

 	set_row() (BaseGraph method)

 	set_type() (BaseGraph method)

 	set_vdata() (BaseGraph method)

 	shortest_path() (Architecture method)

 	simp() (in module pyzx.simplify)

 	
 	
 simplify

 	module

 	solve() (Mat2 method)

 	spider() (in module pyzx.rules)

 	spider_simp() (in module pyzx.simplify)

 	SplitHeuristic (class in pyzx.routing)

 	stats() (BaseGraph method)

 	(Circuit method)

 	stats_dict() (Circuit method)

 	steiner_gauss() (in module pyzx.routing)

 	STEINER_MODE (ElimMode attribute)

 	steiner_tree() (Architecture method)

 	subgraph_from_vertices() (BaseGraph method)

 	supplementarity_simp() (in module pyzx.simplify)

T

 	
 	tcount() (Circuit method)

 	(in module pyzx.simplify)

 	teleport_reduce() (in module pyzx.simplify)

 	
 tensor

 	module

 	tensor() (BaseGraph method)

 	(Circuit method)

 	tensor_to_matrix() (in module pyzx.tensor)

 	tensorfy() (in module pyzx.tensor)

 	
 tikz

 	module

 	tikz_to_graph() (in module pyzx.tikz)

 	tikzit() (in module pyzx.tikz)

 	to_basic_gates() (Circuit method)

 	to_cnots() (Mat2 method)

 	to_emoji() (Circuit method)

 	to_function() (RootHeuristic method)

 	(SplitHeuristic method)

 	to_gh() (in module pyzx.simplify)

 	to_graph() (Circuit method)

 	
 	to_graphml() (BaseGraph method)

 	to_json() (BaseGraph method)

 	to_mat2_row() (Parity method)

 	to_matrix() (BaseGraph method)

 	(Circuit method)

 	to_qasm() (Circuit method)

 	(CNOT_tracker method)

 	to_qc() (Circuit method)

 	to_quil_device() (Architecture method)

 	to_quipper() (Circuit method)

 	to_rg() (in module pyzx.simplify)

 	to_tensor() (BaseGraph method)

 	(Circuit method)

 	to_tikz() (BaseGraph method)

 	(in module pyzx.tikz)

 	to_tikz_sequence() (in module pyzx.tikz)

 	transpose() (Architecture method)

 	twoqubitcount() (Circuit method)

 	type() (BaseGraph method)

 	types() (BaseGraph method)

U

 	
 	unspider() (in module pyzx.rules)

 	
 	update_matrix() (CNOT_tracker method)

 	update_phase_index() (BaseGraph method)

V

 	
 	vdata() (BaseGraph method)

 	vdata_keys() (BaseGraph method)

 	verify_equality() (Circuit method)

 	vertex2qubit() (Architecture method)

 	
 	vertex_degree() (BaseGraph method)

 	vertex_set() (BaseGraph method)

 	vertices() (BaseGraph method)

 	vindex() (BaseGraph method)

 	visualize() (Architecture method)

 _images/clifford_simp.png
3n/2

3n/2

O

3n/2

_images/editor_example.png
In [4]: ¢ = zx.Circuit(3)
c.add_gate("TOF",0,1,2)
g

= C.to_basic_gates().to_graph()

n [6]: e

2x.editor.edit(g)

. @

n/4

. I @ @

/4 n/4

—@ @ @ @ @
Tn/4 /4 Tn/4 /4

Vertex type: Z | Edge type: R

fuse spiders change colorto Z change color to X remove identity ~Add Z identity Convert H-box

decompose Hadamard local complementation = pivot

Save s

copy O/pi spider

push Pauli

bialgebra

_images/clifford_extracted.png
D)

D)

—O

C

O

O O0—0O O

3n/2

O—0O

3n/2

O

3n/2

3n/2

O

3n/2

O

_images/clifford_optimized.png
D))

!

n/2

!

!

N\

)
N

3n/2

n/2

n/2

)
N\

)
N

_static/clifford_extracted.png
D)

D)

—O

C

O

O O0—0O O

3n/2

O—0O

3n/2

O

3n/2

3n/2

O

3n/2

O

_static/clifford_optimized.png
D))

!

n/2

!

!

N\

)
N

3n/2

n/2

n/2

)
N\

)
N

_static/clifford.png
1

n/2

)
‘1’ Ny \
M)
f_%\
U

I)
N\
M)
N4
n/2 /2
)
N4

n/2

_static/clifford_simp.png
3n/2

3n/2

O

3n/2

_static/editor_example.png
In [4]: ¢ = zx.Circuit(3)
c.add_gate("TOF",0,1,2)
g

= C.to_basic_gates().to_graph()

n [6]: e

2x.editor.edit(g)

. @

n/4

. I @ @

/4 n/4

—@ @ @ @ @
Tn/4 /4 Tn/4 /4

Vertex type: Z | Edge type: R

fuse spiders change colorto Z change color to X remove identity ~Add Z identity Convert H-box

decompose Hadamard local complementation = pivot

Save s

copy O/pi spider

push Pauli

bialgebra

_images/clifford.png
1

n/2

)
‘1’ Ny \
M)
f_%\
U

I)
N\
M)
N4
n/2 /2
)
N4

n/2

nav.xhtml

 Table of Contents

 		
 PyZX

 		
 Getting Started

 		
 Frequently Asked Questions

 		
 What is the ZX-calculus? What are ZX-diagrams?

 		
 But why use the ZX-calculus?

 		
 So what has been done with the ZX-calculus?

 		
 Where do I go to ask questions about PyZX and the ZX-calculus?

 		
 I don’t like Python. Can I do ZX-calculus things in different languages?

 		
 What are some things people have done with PyZX?

 		
 What is PyZX not good at?

 		
 Optimizing and simplifying circuits

 		
 Optimizing circuits using the ZX-calculus

 		
 Circuit equality verification

 		
 Gate-level optimization

 		
 Architecture-aware circuit routing

 		
 ZX-diagrams in PyZX and how to modify them

 		
 Accessing and setting vertex and edge type

 		
 Backends

 		
 Creating and modifying ZX-diagrams

 		
 The ZX-diagram editor

 		
 Importing and exporting quantum circuits and ZX-diagrams

 		
 Importing and exporting quantum circuits

 		
 Importing and exporting ZX-diagrams

 		
 Full API documentation

 		
 Graph API

 		
 GraphS

 		
 Graph

 		
 BaseGraph

 		
 Circuit API

 		
 Circuit

 		
 Generating Circuits

 		
 CNOT_HAD_PHASE_circuit

 		
 cliffordT

 		
 cliffordTmeas

 		
 cliffords

 		
 cnots

 		
 identity

 		
 phase_poly

 		
 phase_poly_approximate

 		
 phase_poly_from_gadgets

 		
 Circuit extraction and matrices over Z2

 		
 extract_circuit

 		
 Mat2

 		
 List of simplifications

 		
 simp

 		
 bialg_simp

 		
 clifford_simp

 		
 full_reduce

 		
 gadget_simp

 		
 id_simp

 		
 lcomp_simp

 		
 phase_free_simp

 		
 pivot_boundary_simp

 		
 pivot_gadget_simp

 		
 pivot_simp

 		
 reduce_scalar

 		
 spider_simp

 		
 supplementarity_simp

 		
 tcount

 		
 teleport_reduce

 		
 to_gh

 		
 to_rg

 		
 List of rewrite rules

 		
 apply_copy

 		
 apply_gadget_phasepoly

 		
 apply_rule

 		
 apply_supplementarity

 		
 bialg

 		
 lcomp

 		
 match_bialg

 		
 match_bialg_parallel

 		
 match_copy

 		
 match_gadgets_phasepoly

 		
 match_ids

 		
 match_ids_parallel

 		
 match_lcomp

 		
 match_lcomp_parallel

 		
 match_phase_gadgets

 		
 match_pivot

 		
 match_pivot_boundary

 		
 match_pivot_gadget

 		
 match_pivot_parallel

 		
 match_spider

 		
 match_spider_parallel

 		
 match_supplementarity

 		
 merge_phase_gadgets

 		
 pivot

 		
 remove_ids

 		
 spider

 		
 unspider

 		
 List of optimization functions

 		
 basic_optimization

 		
 full_optimize

 		
 phase_block_optimize

 		
 List of routing functions

 		
 create_architecture

 		
 Architecture

 		
 Parity

 		
 CNOT_tracker

 		
 ElimMode

 		
 CostMetric

 		
 FitnessFunction

 		
 gauss

 		
 permuted_gauss

 		
 sequential_gauss

 		
 steiner_gauss

 		
 rec_steiner_gauss

 		
 RoutingMethod

 		
 RootHeuristic

 		
 SplitHeuristic

 		
 route_phase_poly

 		
 Functions for dealing with tensors

 		
 adjoint

 		
 compare_tensors

 		
 compose_tensors

 		
 find_scalar_correction

 		
 is_unitary

 		
 tensor_to_matrix

 		
 tensorfy

 		
 Drawing

 		
 arrange_scalar_diagram

 		
 draw

 		
 draw_d3

 		
 draw_matplotlib

 		
 graphs_to_gif

 		
 matrix_to_latex

 		
 print_matrix

 		
 Tikz and Quantomatic functionality

 		
 tikz_to_graph

 		
 tikzit

 		
 to_tikz

 		
 to_tikz_sequence

 		
 edit_graph

_static/plus.png

_static/file.png

_static/minus.png

